Ressource pédagogique : Self-Supervised Visual Learning and Synthesis
Présentation de: Self-Supervised Visual Learning and Synthesis
Informations pratiques sur cette ressource
Droits réservés à l'éditeur et aux auteurs.
Description de la ressource pédagogique
Description (résumé)
Computer vision has made impressive gains through the use of deep learning models, trained with large-scale labeled data. However, labels require expertise and curation and are expensive to collect. Can one discover useful visual representations without the use of explicitly curated labels? In this talk, I will present several case studies exploring the paradigm of self-supervised learning ? using raw data as its own supervision. Several ways of defining objective functions in high-dimensional spaces will be discussed, including the use of General Adversarial Networks (GANs) to learn the objective function directly from the data. Applications of self-supervised learning will be presented, including colorization, on/off-screen source separation, image forensics, paired and unpaired image-to-image translation (aka pix2pix and cycleGAN), and curiosity-based exploration.
"Domaine(s)" et indice(s) Dewey
- Infographie (006.6)
- Processing modes--computer science--multimedia-systems programs, . . . (006.787)
- machine learning (006.31)
Thème(s)
Intervenants, édition et diffusion
Intervenants
Editeur(s)
-
INRIA (Institut national de recherche en informatique et automatique)
Voir toutes les ressources pédagogiques
Diffusion
-
Canal-u.fr
Voir toutes les ressources pédagogiques
AUTEUR(S)
-
Alexei A. Efros
ÉDITION
INRIA (Institut national de recherche en informatique et automatique)
EN SAVOIR PLUS
-
Identifiant de la fiche
53953 -
Identifiant
oai:canal-u.fr:53953 -
Schéma de la métadonnée
- LOMv1.0
- LOMFRv1.0
- Voir la fiche XML
-
Entrepôt d'origine
Canal-u.fr -
Date de publication
28-11-2019