Ressource pédagogique : Self-Supervised Visual Learning and Synthesis

Computer vision has made impressive gains through the use of deep learning models, trained with large-scale labeled data. However, labels require expertise and curation and are expensive to collect. Can one discover useful visual representations without the use of explicitly curated labels? In this ...
cours / présentation - Date de création : 28-11-2019
Auteur(s) : Alexei A. Efros
Partagez !

Présentation de: Self-Supervised Visual Learning and Synthesis

Informations pratiques sur cette ressource

Anglais
Type pédagogique : cours / présentation
Niveau : master, doctorat
Durée d'exécution : 1 heure 18 minutes 1 seconde
Contenu : image en mouvement
Document : video/mp4
Taille : 346.61 Mo
Droits : libre de droits, gratuit
Droits réservés à l'éditeur et aux auteurs.

Description de la ressource pédagogique

Description (résumé)

Computer vision has made impressive gains through the use of deep learning models, trained with large-scale labeled data. However, labels require expertise and curation and are expensive to collect. Can one discover useful visual representations without the use of explicitly curated labels? In this talk, I will present several case studies exploring the paradigm of self-supervised learning ? using raw data as its own supervision. Several ways of defining objective functions in high-dimensional spaces will be discussed, including the use of General Adversarial Networks (GANs) to learn the objective function directly from the data. Applications of self-supervised learning will be presented, including colorization, on/off-screen source separation, image forensics, paired and unpaired image-to-image translation (aka pix2pix and cycleGAN), and curiosity-based exploration.

"Domaine(s)" et indice(s) Dewey

  • Infographie (006.6)
  • Processing modes--computer science--multimedia-systems programs, . . . (006.787)
  • machine learning (006.31)

Thème(s)

Intervenants, édition et diffusion

Intervenants

Fournisseur(s) de contenus : INRIA (Institut national de recherche en informatique et automatique), CNRS - Centre National de la Recherche Scientifique, UNS

Editeur(s)

Diffusion

Partagez !

AUTEUR(S)

  • Alexei A. Efros

ÉDITION

INRIA (Institut national de recherche en informatique et automatique)

EN SAVOIR PLUS

  • Identifiant de la fiche
    53953
  • Identifiant
    oai:canal-u.fr:53953
  • Schéma de la métadonnée
  • Entrepôt d'origine
    Canal-u.fr
  • Date de publication
    28-11-2019