Ressource pédagogique : Strict monotonicity of percolation thresholds under covering maps (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)

Percolation is a model for propagation in porous media that as introduced in  1957 by Broadbent and Hammersley. An infinite graph G models the geometry of the situation and a parameter p embodies its porosity: percolation consists in keeping independently each edge with probability p, erasing it...
cours / présentation - Date de création : 20-03-2019
Auteur(s) : Sébastien Martineau
Partagez !

Présentation de: Strict monotonicity of percolation thresholds under covering maps (workshop ERC Nemo Processus ponctuels et graphes aléatoires unimodulaires)

Informations pratiques sur cette ressource

Anglais
Type pédagogique : cours / présentation
Niveau : doctorat
Durée d'exécution : 50 minutes 47 secondes
Contenu : image en mouvement
Document : video/mp4
Taille : 4.33 Go
Droits : libre de droits, gratuit
Droits réservés à l'éditeur et aux auteurs.

Description de la ressource pédagogique

Description (résumé)

Percolation is a model for propagation in porous media that as introduced in  1957 by Broadbent and Hammersley. An infinite graph G models the geometry of the situation and a parameter p embodies its porosity: percolation consists in keeping independently each edge with probability p, erasing it otherwise, and looking at the infinite connected components of the resulting graph. It turns out that there is a critical porosity: for smaller porosities, all components are finite almost surely, while for larger ones, there is almost surely at least one infinite component. How does this critical porosity depend on the underlying graph? This is a broad question, that also has connections with the behaviour at the critical point. In this talk, we will consider this question in the following perspective: we will prove that, under reasonable conditions, quotienting a graph strictly increases it critical porosity. This is joint work with Franco Severo.

"Domaine(s)" et indice(s) Dewey

  • Théorie des graphes. Construction des graphes (511.5)

Thème(s)

Intervenants, édition et diffusion

Intervenants

Fournisseur(s) de contenus : INRIA (Institut national de recherche en informatique et automatique), François Baccelli

Editeur(s)

Diffusion

Partagez !

AUTEUR(S)

  • Sébastien Martineau

ÉDITION

INRIA (Institut national de recherche en informatique et automatique)

EN SAVOIR PLUS

  • Identifiant de la fiche
    50425
  • Identifiant
    oai:canal-u.fr:50425
  • Schéma de la métadonnée
  • Entrepôt d'origine
    Canal-u.fr
  • Date de publication
    20-03-2019