Ressource pédagogique : 1.8. Goppa Codes

In this session, we will talk about another family of codes that have an efficient decoding algorithm: the Goppa codes. One limitation of the generalized Reed-Solomon codes is the fact that the length is bounded by the size of the field over which it is defined. This implies that these codes are use...
cours / présentation - Date de création : 05-05-2015
Partagez !

Présentation de: 1.8. Goppa Codes

Informations pratiques sur cette ressource

Anglais
Type pédagogique : cours / présentation
Niveau : master, doctorat
Durée d'exécution : 5 minutes 40 secondes
Contenu : image en mouvement
Document : video/mp4
Taille : 125.03 Mo
Droits : libre de droits, gratuit
Droits réservés à l'éditeur et aux auteurs. Ces ressources de cours sont, sauf mention contraire, diffusées sous Licence Creative Commons. L’utilisateur doit mentionner le nom de l’auteur, il peut exploiter l’?uvre sauf dans un contexte commercial et il ne peut apporter de modifications à l’?uvre originale.

Description de la ressource pédagogique

Description (résumé)

In this session, we will talk about another family of codes that have an efficient decoding algorithm: the Goppa codes. One limitation of the generalized Reed-Solomon codes is the fact that the length is bounded by the size of the field over which it is defined. This implies that these codes are useful when we use a large field size. In the sequence, we'll present a method to obtain a new code over small alphabets by exploiting the properties of the generalized Reed-Solomon codes. So, the idea is to construct a generalized Reed-Solomon code over a sufficiently large extension of a field and extract only those codewords that lie completely in the field.  Let a be a n-tuple of elements from the field Fq^n which are all different and let b be an n-tuple of elements from the field Fq^n which are non-zeros. Then, the alternant codes associated to the pair a,b and parameter r is the Fq linear restriction of the generalized Reed-Solomon codes of dimension r associated to the pair a,b. a will be called the support and b the column multiplier. So, the alternant code associated to the parameters a and b is a linear code with dimension greater than n - mr and minimum distance greater than r + 1  And the proof is very easy. First of all, recall that the dual of a generalized Reed-Solomon code is again a generalized Reed-Solomon code. And this new generalized Reed-Solomon code has parameters n, n - r and r + 1 since the generalized Reed-Solomon code is MDS. Thus, the alternant code associated to the pair a and b can be defined by r parity check equations over Fq^m and mr parity check equations over Fq. So, the dimension of the alternant code must be at least n - mr. Moreover, the minimum distance of an alternant code is at least the minimum distance of a generalized Reed-Solomon code since the generalized Reed-Solomon code is a subset of the alternant code.

"Domaine(s)" et indice(s) Dewey

  • Analyse numérique (518)
  • Théorie de l'information (003.54)
  • données dans les systèmes informatiques (005.7)
  • cryptographie (652.8)
  • Mathématiques (510)

Thème(s)

Partagez !

AUTEUR(S)

  • Irene MARQUEZ-CORBELLA
  • Nicolas SENDRIER
  • Matthieu FINIASZ

EN SAVOIR PLUS

  • Identifiant de la fiche
    32809
  • Identifiant
    oai:canal-u.fr:32809
  • Schéma de la métadonnée
  • Entrepôt d'origine
    Canal-u.fr