Ressource pédagogique : 1.6. Decoding (A Difficult Problem)

The process of correcting errors and obtaining back the message is called decoding. In this sequence, we will focus on this process, the decoding. We would like that the decoder of the received vector, which is the encoding of the original message plus a certain vector, is again the original message...
cours / présentation - Date de création : 05-05-2015
Partagez !

Présentation de: 1.6. Decoding (A Difficult Problem)

Informations pratiques sur cette ressource

Anglais
Type pédagogique : cours / présentation
Niveau : master, doctorat
Durée d'exécution : 8 minutes 14 secondes
Contenu : image en mouvement
Document : video/mp4
Taille : 263.62 Mo
Droits : libre de droits, gratuit
Droits réservés à l'éditeur et aux auteurs. Ces ressources de cours sont, sauf mention contraire, diffusées sous Licence Creative Commons. L’utilisateur doit mentionner le nom de l’auteur, il peut exploiter l’?uvre sauf dans un contexte commercial et il ne peut apporter de modifications à l’?uvre originale.

Description de la ressource pédagogique

Description (résumé)

The process of correcting errors and obtaining back the message is called decoding. In this sequence, we will focus on this process, the decoding. We would like that the decoder of the received vector, which is the encoding of the original message plus a certain vector, is again the original message, for every message and every reasonable noisy pattern. The basis of decoding is the following principle, called Minimum Distance Decoding. Given a received vector, we look for a codeword that minimizes the Hamming distance with the received vector One of the most obvious decoding algorithms is Brute Force. What do we have to do? First of all, enumerate all codewords until we find one at distance t or less from the received vector. And we return such codeword. The complexity of this Brute Force is n*q^k since we have to compare the received vectors, and all the codewords; recall that we have q^k codewords. Thus, large parameters make any Brute Force method impractical. Let us explain a decoding method using parity check matrices. A vector is in the code if an only if this product is 0.

"Domaine(s)" et indice(s) Dewey

  • Analyse numérique (518)
  • Théorie de l'information (003.54)
  • données dans les systèmes informatiques (005.7)
  • cryptographie (652.8)
  • Mathématiques (510)

Thème(s)

Partagez !

AUTEUR(S)

  • Irene MARQUEZ-CORBELLA
  • Nicolas SENDRIER
  • Matthieu FINIASZ

EN SAVOIR PLUS

  • Identifiant de la fiche
    32797
  • Identifiant
    oai:canal-u.fr:32797
  • Schéma de la métadonnée
  • Entrepôt d'origine
    Canal-u.fr