Ressource pédagogique : 1.6. Decoding (A Difficult Problem)
Présentation de: 1.6. Decoding (A Difficult Problem)
Informations pratiques sur cette ressource
Droits réservés à l'éditeur et aux auteurs. Ces ressources de cours sont, sauf mention contraire, diffusées sous Licence Creative Commons. L’utilisateur doit mentionner le nom de l’auteur, il peut exploiter l’?uvre sauf dans un contexte commercial et il ne peut apporter de modifications à l’?uvre originale.
Description de la ressource pédagogique
Description (résumé)
The process of correcting errors and obtaining back the message is called decoding. In this sequence, we will focus on this process, the decoding. We would like that the decoder of the received vector, which is the encoding of the original message plus a certain vector, is again the original message, for every message and every reasonable noisy pattern. The basis of decoding is the following principle, called Minimum Distance Decoding. Given a received vector, we look for a codeword that minimizes the Hamming distance with the received vector One of the most obvious decoding algorithms is Brute Force. What do we have to do? First of all, enumerate all codewords until we find one at distance t or less from the received vector. And we return such codeword. The complexity of this Brute Force is n*q^k since we have to compare the received vectors, and all the codewords; recall that we have q^k codewords. Thus, large parameters make any Brute Force method impractical. Let us explain a decoding method using parity check matrices. A vector is in the code if an only if this product is 0.
"Domaine(s)" et indice(s) Dewey
- Analyse numérique (518)
- Théorie de l'information (003.54)
- données dans les systèmes informatiques (005.7)
- cryptographie (652.8)
- Mathématiques (510)
Thème(s)
AUTEUR(S)
-
Irene MARQUEZ-CORBELLA
-
Nicolas SENDRIER
-
Matthieu FINIASZ
EN SAVOIR PLUS
-
Identifiant de la fiche
32797 -
Identifiant
oai:canal-u.fr:32797 -
Schéma de la métadonnée
- LOMv1.0
- LOMFRv1.0
- Voir la fiche XML
-
Entrepôt d'origine
Canal-u.fr