Ressource pédagogique : 1.4. Parity Checking

 There are two standard ways to describe a subspace, explicitly by giving a basis, or implicitly, by the solution space of the set of homogeneous linear equations. Therefore, there are two ways of describing a linear code, explicitly, as we have seen in the previous sequence, by a generator matrix, ...
cours / présentation - Date de création : 05-05-2015
Partagez !

Présentation de: 1.4. Parity Checking

Informations pratiques sur cette ressource

Anglais
Type pédagogique : cours / présentation
Niveau : master, doctorat
Durée d'exécution : 4 minutes 47 secondes
Contenu : image en mouvement
Document : video/mp4
Taille : 100.92 Mo
Droits : libre de droits, gratuit
Droits réservés à l'éditeur et aux auteurs. Ces ressources de cours sont, sauf mention contraire, diffusées sous Licence Creative Commons. L’utilisateur doit mentionner le nom de l’auteur, il peut exploiter l’?uvre sauf dans un contexte commercial et il ne peut apporter de modifications à l’?uvre originale.

Description de la ressource pédagogique

Description (résumé)

 There are two standard ways to describe a subspace, explicitly by giving a basis, or implicitly, by the solution space of the set of homogeneous linear equations. Therefore, there are two ways of describing a linear code, explicitly, as we have seen in the previous sequence, by a generator matrix, or implicitly, by the null space of a matrix. This is what we will see in this sequence. This leads to the following definition: H is a parity check matrix of a linear code, if the code is the null space of H. In this way, any linear code is completely specified by a parity check matrix. Suppose that we have a message of 4 bits, then we put them in the middle of the Venn Diagram, and we complete the empty three areas according to the following rules. The number of ones in every circle is even. This gives us three redundant bits that we add to the message. We say that our circle is incorrect, if its parity is odd. So, if you modify any symbol, then the error is propagated to the circle where this symbol is involved. Thus, if the circle one and the second circle are wrong, then we deduce that an error has occurred in the first position. If the three circles are wrong, then we deduce that there has been an error in the fourth position. Thus, the redundant information can be obtained from the message by means of three linear equations or parity check.

"Domaine(s)" et indice(s) Dewey

  • Analyse numérique (518)
  • Théorie de l'information (003.54)
  • données dans les systèmes informatiques (005.7)
  • cryptographie (652.8)
  • Mathématiques (510)

Thème(s)

Partagez !

AUTEUR(S)

  • Irene MARQUEZ-CORBELLA
  • Nicolas SENDRIER
  • Matthieu FINIASZ

EN SAVOIR PLUS

  • Identifiant de la fiche
    32793
  • Identifiant
    oai:canal-u.fr:32793
  • Schéma de la métadonnée
  • Entrepôt d'origine
    Canal-u.fr