Ressource pédagogique : 1.3. Encoding (Linear Transformation)

In this session, we will talk about the easy map of the  - one-way trapdoor functions based on error-correcting codes. We suppose that the set of all messages that we wish to transmit is the set of k-tuples having elements from the field Fq. There are qk possible messages and we referred to it as ...
cours / présentation - Date de création : 05-05-2015
Partagez !

Présentation de: 1.3. Encoding (Linear Transformation)

Informations pratiques sur cette ressource

Anglais
Type pédagogique : cours / présentation
Niveau : master, doctorat
Durée d'exécution : 4 minutes 15 secondes
Contenu : image en mouvement
Document : video/mp4
Taille : 124.47 Mo
Droits : libre de droits, gratuit
Droits réservés à l'éditeur et aux auteurs. Ces ressources de cours sont, sauf mention contraire, diffusées sous Licence Creative Commons. L’utilisateur doit mentionner le nom de l’auteur, il peut exploiter l’?uvre sauf dans un contexte commercial et il ne peut apporter de modifications à l’?uvre originale.

Description de la ressource pédagogique

Description (résumé)

In this session, we will talk about the easy map of the  - one-way trapdoor functions based on error-correcting codes. We suppose that the set of all messages that we wish to transmit is the set of k-tuples having elements from the field Fq. There are qk possible messages and we referred to it as the message space.  In order to detect and possibly correct errors, we add some redundancy, thus the k tuples will be embedded into n-tuples with n greater than k. In this MOOC, we will focus on linear encoder that is linear transformations. Every linear transformation can be represented by a matrix multiplication. Thus our code, which is the image of the message space,  consists of codewords of the same length which are closed under addition and scalar multiplication. If the encoded matrix is injective, that is, if no two messages have the same image, or in other words, if the encoding matrix has rank k, then we consider a one to one correspondence between the message space and the linear code. These are the cases that will care, where the encoding is some multiplication by a matrix of rank k, that is, our code is a vector subspace of Fq^n. 

"Domaine(s)" et indice(s) Dewey

  • Analyse numérique (518)
  • Théorie de l'information (003.54)
  • données dans les systèmes informatiques (005.7)
  • cryptographie (652.8)
  • Mathématiques (510)

Thème(s)

Partagez !

AUTEUR(S)

  • Irene MARQUEZ-CORBELLA
  • Nicolas SENDRIER
  • Matthieu FINIASZ

EN SAVOIR PLUS

  • Identifiant de la fiche
    32789
  • Identifiant
    oai:canal-u.fr:32789
  • Schéma de la métadonnée
  • Entrepôt d'origine
    Canal-u.fr