Ressource pédagogique : 1.2. Introduction II - Coding Theory

In this session, we will give a brief introduction to Coding Theory. Claude Shannon's paper from 1948 entitled "A Mathematical Theory of Communication" gave birth to the disciplines of Information Theory and Coding Theory. The main goal of these disciplines is efficient transfer of reliable informat...
cours / présentation - Date de création : 05-05-2015
Partagez !

Présentation de: 1.2. Introduction II - Coding Theory

Informations pratiques sur cette ressource

Anglais
Type pédagogique : cours / présentation
Niveau : master, doctorat
Durée d'exécution : 5 minutes 51 secondes
Contenu : image en mouvement
Document : video/mp4
Taille : 189.26 Mo
Droits : libre de droits, gratuit
Droits réservés à l'éditeur et aux auteurs. Ces ressources de cours sont, sauf mention contraire, diffusées sous Licence Creative Commons. L’utilisateur doit mentionner le nom de l’auteur, il peut exploiter l’?uvre sauf dans un contexte commercial et il ne peut apporter de modifications à l’?uvre originale.

Description de la ressource pédagogique

Description (résumé)

In this session, we will give a brief introduction to Coding Theory. Claude Shannon's paper from 1948 entitled "A Mathematical Theory of Communication" gave birth to the disciplines of Information Theory and Coding Theory. The main goal of these disciplines is efficient transfer of reliable information. To be efficient, the transfer of information must not require a big amount of time and effort.  To be reliable, the transmitted and received data must resemble. However, during the transmission over a noisy channel, the information will be damaged. So, it has become necessary to develop ways of detecting when an error has occurred and to correct it. For example, we may think of the transmission of satellite photos taken in space and sent back to the earth. So, here is an example of communication. We begin by selecting an alphabet. Then, every original message is presented, as a set of k-tuples of the chosen alphabet. We have k symbols of information and we add n - k redundant symbols to obtain a codeword of length n with n greater than k.

"Domaine(s)" et indice(s) Dewey

  • Analyse numérique (518)
  • Théorie de l'information (003.54)
  • données dans les systèmes informatiques (005.7)
  • cryptographie (652.8)
  • Mathématiques (510)

Thème(s)

Partagez !

AUTEUR(S)

  • Irene MARQUEZ-CORBELLA
  • Nicolas SENDRIER
  • Matthieu FINIASZ

EN SAVOIR PLUS

  • Identifiant de la fiche
    32785
  • Identifiant
    oai:canal-u.fr:32785
  • Schéma de la métadonnée
  • Entrepôt d'origine
    Canal-u.fr