Ressource pédagogique : Decision making at scale: Algorithms, Mechanisms, and Platforms

YouTube competes with Hollywood as an entertainment channel, and also supplements Hollywood by acting as a distribution mechanism. Twitter has a similar relationship to news media, and Coursera to Universities. But there are no online alternatives for making democratic decisions at large scale ...
cours / présentation - Date de création : 16-06-2016
Auteur(s) : Ashish Goel
Partagez !

Présentation de: Decision making at scale: Algorithms, Mechanisms, and Platforms

Informations pratiques sur cette ressource

Anglais
Type pédagogique : cours / présentation
Niveau : master, doctorat
Durée d'exécution : 1 heure 2 minutes 59 secondes
Contenu : image en mouvement
Document : video/mp4
Taille : 1.23 Go
Droits : libre de droits, gratuit
Droits réservés à l'éditeur et aux auteurs.

Description de la ressource pédagogique

Description (résumé)

YouTube competes with Hollywood as an entertainment channel, and also supplements Hollywood by acting as a distribution mechanism. Twitter has a similar relationship to news media, and Coursera to Universities. But there are no online alternatives for making democratic decisions at large scale as a society. In this talk, we will describe two algorithmic approaches towards large scale decision making that we are exploring. a) Knapsack voting and participatory budgeting: All budget problems are knapsack problems at their heart, since the goal is to pack the largest amount of societal value into a budget. This naturally leads to « knapsack voting » where each voter solves a knapsack problem, or comparison-based voting where each voter compares pairs of projects in terms of benefit-per-dollar. We analyze natural aggregation algorithms for these mechanisms, and show that knapsack voting is strategy-proof. We will also describe our experience with helping implement participatory budgeting in close to two dozen cities and municipalities, and briefly comment on issues of fairness. b) Triadic consensus: Here, we divide individuals into small groups (say groups of three) and ask them to come to consensus; the results of the triadic deliberations in each round form the input to the next round. We show that this method is efficient and strategy-proof in fairly general settings, whereas no pair-wise deliberation process can have the same properties. This is joint work with Tanja Aitamurto, Brandon Fain, Anilesh Krishnaswamy, David Lee, Kamesh Munagala, and Sukolsak Sakshuwong. Bio:

"Domaine(s)" et indice(s) Dewey

  • Prise de décision et gestion de l'information (658.403)
  • Algorithmes (518.1)
  • Informatique - Traitement des données informatiques (004)

Thème(s)

Intervenants, édition et diffusion

Intervenants

Fournisseur(s) de contenus : INRIA (Institut national de recherche en informatique et automatique), CNRS - Centre National de la Recherche Scientifique, UNS

Editeur(s)

Diffusion

Partagez !

AUTEUR(S)

  • Ashish Goel

ÉDITION

Région PACA

INRIA (Institut national de recherche en informatique et automatique)

EN SAVOIR PLUS

  • Identifiant de la fiche
    22851
  • Identifiant
    oai:canal-u.fr:22851
  • Schéma de la métadonnée
  • Entrepôt d'origine
    Canal-u.fr
  • Date de publication
    16-06-2016