Ressource pédagogique : Number-theoretic methods in quantum computing

An important problem in quantum computing is the so-called approximate synthesis problem: to find a quantum circuit, preferably as short as possible, that approximates a given unitary operator up to given epsilon. Moreover, the solution should be computed by an efficient algorithm. For nearly tw...
cours / présentation - Date de création : 28-04-2016
Auteur(s) : Peter SELINGER
Partagez !

Présentation de: Number-theoretic methods in quantum computing

Informations pratiques sur cette ressource

Anglais
Type pédagogique : cours / présentation
Niveau : master, doctorat
Durée d'exécution : 1 heure 9 minutes 15 secondes
Contenu : image en mouvement
Document : video/mp4
Taille : 1.33 Go
Droits : libre de droits, gratuit
Droits réservés à l'éditeur et aux auteurs.

Description de la ressource pédagogique

Description (résumé)

An important problem in quantum computing is the so-called approximate synthesis problem: to find a quantum circuit, preferably as short as possible, that approximates a given unitary operator up to given epsilon. Moreover, the solution should be computed by an efficient algorithm. For nearly two decades, the standard solution to this problem was the Solovay-Kitaev algorithm, which is based on geometric ideas. This algorithm produces circuits of size O(log^c(1/epsilon)), where c is approximately 3.97. It was a long-standing open problem whether this exponent c could be reduced to 1. In this talk, I will report on a number-theoretic algorithm that achieves circuit size O(log(1/epsilon)) in the case of the so-called Clifford+T gate set, thereby answering the above question positively. In case the operator to be approximated is diagonal, the algorithm satisfies an even stronger property: it computes the optimal solution to the given approximation problem. The algorithm also generalizes to certain other gate sets arising from number-theoretic unitary groups. This is joint work with Neil J. Ross.

"Domaine(s)" et indice(s) Dewey

  • Algèbre et théorie des nombres (512)
  • quantum computing (006.3843)

Thème(s)

Intervenants, édition et diffusion

Intervenants

Fournisseur(s) de contenus : INRIA (Institut national de recherche en informatique et automatique), CNRS - Centre National de la Recherche Scientifique, UNS

Editeur(s)

Diffusion

Partagez !

AUTEUR(S)

  • Peter SELINGER

ÉDITION

Région PACA

INRIA (Institut national de recherche en informatique et automatique)

EN SAVOIR PLUS

  • Identifiant de la fiche
    21621
  • Identifiant
    oai:canal-u.fr:21621
  • Schéma de la métadonnée
  • Entrepôt d'origine
    Canal-u.fr
  • Date de publication
    28-04-2016