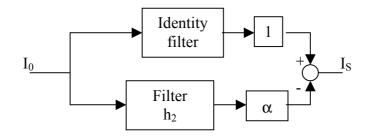
<u>Chapter 3 – Linear filtering</u>

TEST

Let us consider linear filters H which are defined by a 2D convolution kernel called h. The kernel size will be 3×3 for this entire test. The h(0,0) element is located on the center of the kernel support. I_{θ} stands for the input image and I_{S} stands for the output image. I_{θ} is a grayscale image. Its luminance values belong to the range [0, 255].

1 – What is the 3×3 convolution kernel h_1 of the *Identity filter* (such as $I_S = I_0$)?

2 – Let H_2 be the filter whose convolution kernel h_2 is:


Γ) 1	0]
1	4	1
) 1	0]

2.1 – What is the DC gain of this filter (gain according to the spatial frequencies $v_X = 0$ and $v_Y = 0$)?

2.2 – If the image signal is constant and equal to A on an image area whose size is larger or equal to 3×3 , what is the I_S computed value at the center of this area?

3 – By editing a Matlab program, perform the filtering of an $(M \times N)$ image I_{θ} whose kernel is h_2 . The output image must be the same size as the input image I_{θ} . What do you notice on the object edges of the image "*Boats_lumi.bmp*"?

4 – We want to enhance the contrast of the image I_{θ} objects. To do that, we want to create a third, functionally equivalent filter to find the difference between the Identity filter and a fraction (value: α) of the filter whose kernel is h_2 .

Write the Matlab program to create this third filter. Visualize the results with the following values of α : 0, 1/10, 1/4, 1/2. Describe the results obtained on the zones corresponding to the fishing boom and the fishing rope on the image "*Boats_lumi.bmp*".