
Exercise Chapter 3 – Convolution

In this exercise, no programming is required. The goal is to perform a filtering by

computing the convolution of an input image and the filter’s kernel.

Convolution

 We will use the convolution operator on a small portion of the original image

“BOATS”. On the figure below, this portion is delimited by a red rectangle that contains a part

of the fishing boat’s boom.

Image « BOATS »

The following array I0 contains the luminance value of the pixels which are in the (20×11)

delimited zone. In two diagonal bands, we can easily distinguish the pixels which belong to

the fishing boom and to the rope.

The goal is to perform two kinds of filtering on some elements of this 2D array.

1 – Low-pass filtering

Let us consider a (3×3) low-pass filter. Its convolution kernel is:













1
2
1

2
4
2

1
2
1

.
16
1

After having performed this filter on the (20×11) area, we observe the following partial result:

Fill in the gray fields to have the full output array IS (to round to the nearest integers less than

or equal to the elements.).

2 – Contrast enhancement filtering

We wish to enhance the contrast of object edges in the delimited area. We use thus an

“enhancement” filter which has the following convolution kernel:












−

−

−
−

0
1
0

1
5
1

0
1
0

After having performed this filter, we observe the following partial result:

Again, fill in the gray fields to have the full output array.

3 – Border distortions

When computing an output pixel at the boundary of an image, a portion of the convolution

kernel is usually off the edge of the image. Propose some examples of boundary conditions to

fill in these “off-the-edge” image pixels.

Solution to the exercise on convolution

1 – Here is the 2D output array after low-pass filt ering with the (3 ×3)
binomial filter:

Here are all the steps to compute the output value of the pixel I S(11, 1):

I S(11,1)= ∑
+

−=
∑
+
−=

−−
1

1i

1

1j
j)i,1(110I.j)h(i,

16
1 .

 = 1)i,1(110I.h(i,1)0)i,1(110I.h(i,0)
1

1i
1))(i,1(110I.1)h(i,

16
1 −−+−−+∑

+
−=

−−−−.

 = .
16
1


 +−++−++−− 1,0)(1101,1).Ih(1,1)(1101,0).Ih(1,2)(1101).I1,h(

 + (11,0)0h(0,1).I(11,1)0h(0,0).I(11,2)01).Ih(0, ++−

 +

−+−+−− 1,0)(120h(1,1).I1,1)(120h(1,0).I1,2)(1201).Ih(1,

 =
16
1 . [1x219 + 2x108 + 1x60 + 2x64 + 4x69 + 2x84 + 1x87

 + 2x100 + 1x146]
 = 1500/16 = 93.75

Thus: I S(11,1) = E[93.75] = 93

Displayed here are the images before (on the left) and after (on the right)
filtering:

Here, the smoothing effects (caused by removing the high spatial
frequencies) of the low-pass filter are strongly vi sible.

2 – Here is the array after performing the 3 ×3 enhancement filter:

Here are all the steps to compute the output value of the pixel I S(12, 1)
for example:

Is(12,1)= ∑
+

−=
∑
+
−=

−−
1

1i

1

1j
j)i,1(120I.j)h(i,

 = 1)i,1(120I.h(i,1)0)i,1(120I.h(i,0)
1

1i
1))(i,1(120I.1)h(i, −−+−−+∑

+
−=

−−−−

 = 
 +−++−++−− 1,0)(1201,1).Ih(1,1)(1201,0).Ih(1,2)(1201).I1,h(

 + (12,0)0h(0,1).I(12,1)0h(0,0).I(12,2)01).Ih(0, ++−

 +

−+−+−− 1,0)(120h(1,1).I1,1)(120h(1,0).I1,2)(1201).Ih(1,

 = 0x209 + (-1)x218 + 0x174 + (-1)x219 + 5x108 + (-1)x60 + 0x64
 + (-1)x69 + 0x84
 = -26

Note: here, the output luminance values can be nega tive or higher than 255.
To display the image result, it is thus necessary t o scale the gray levels
to the full range [0, 255].

Here is the display of the arrays before (on the le ft) and after (on the
right) filtering:

The enhancement filter which is performed is indeed the sum of an Identity
filter and a Laplacian filter (useful for edge dete ction):
 Identity Laplacian Enhanc ement













000
010
000

 +












−
−−

−

010
141
010

 ≡












−
−−

−

010
151
010

This filter enhances the contrast of the objects (l ike the fishing boom and
rope) in the original image.

3 – A lot of methods are defined to compensate the border distortions:
zero-padding, border replication, etc.
For more information about these boundary condition s, refer to the
correction of the exercise: “Filtering” (chapter3).
Here, we will only show some results for the low-pa ss filtering with two
methods used to remove these border distortions.

• Zero-padding :

That is the simplest method: the "off-the-edge" nei ghborhood is set to 0.
Zero-padding can result in a dark band around the e dge of the image:

• Replication :

The "off-the-edge" neighborhood is set to the value of the nearest border
pixel in the original image (to filter using border replication, pass the
optional argument ‘ replicate’ to the Matlab function imfilter). The border
replication eliminates the zero-padding artifacts a round the edge of the
image.

