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Chapter 3

Fundamental of Image Processing

Linear Filtering

The Concept of Neighborhoods
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The Concept of Neighborhoods

• Point P: affix p = (m, n)

• Neighborhood: V(P) = {P’ connected to P}

Discrete image domain

Examples:   4-N 8-N
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Image processing is fundamentally based on techniques using neighborhoods. An 

image processing which is performed at the affix p of the pixel P depends not only on this 

pixel P but also on pixels in its neighboring area. Let us consider a pixel P whose location in 

the image is defined by the coordinates (m, n). Its affix is thus p = (m, n). A neighborhood 

V(P) of the pixel P can be defined by a set of pixels P' that are connected to P. 

The pixel P (circled in the figure) belongs to its own neighborhood V(P). 

We must here define the concept of connectivity: the criteria that describe how pixels within a 

discrete image form a connected group. Rather than developing this concept, we show here in 

the top figure the two most ”y qLRWycqLvmmon examples: 

- a “4-connected” neighborhood: the surrounded pixel has only four neighboring pixels. 

The distance between the surrounded pixel and any pixel of its neighborhood is d
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I s (m, n) = h(i, j).I e(m − i, n − j )
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Example – Convolution – Correlation

Convolution kernel : h =
h ,− 2 h h h h
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I s (m, n) = h (i, j).I e(m + i, n + j)
i=−1

+1
∑
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∑ *
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Example : filter support of size (3 × 5)   (3 in vertical and 5 in horizontal)

Convolution

Correlation Let    h* (i , j)= h (-i,-j)     

( => symmetric of h  with respect to (0,0) )

 

 

In the case of linear filtering using convolution, the filter is completely characterized by the 

coefficients { h(i,j) } (which can also be written { hi,j } to remind us that “i” and “j” are 

discrete variables). These coefficients define the convolution “kernel” of the filter. 

This kernel defines: 

- the neighborhood V(Pe) to use (in the example it is a (3×5) neighborhood where the 

position (0,0) must be centered on Pe); 

- the respective weightings h(i, j) of each neighboring pixel needed to calculate the new 

value PS. 

 

When the size of the rectangular neighborhood support (I, J) and the weightings are known, 

we can calculate all the pixels of the image Is: 

∑∑
∈ ∈

−−=
Ii Jj
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Note: When computing an output pixel at the boundary of an image, a portion of the 

convolution kernel is usually off the edge of the image Ie. It is thus necessary to specify 

“boundary conditions” to process border distortions (simple solution: to consider only the 

pixels in the image). Some ways of dealing with the boundaries are described in the exercise: 

“Linear filtering” in this chapter. 



For example, let us consider a linear filter « h ». Its convolution kernel is: 
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In fact this filter is the sum of a “Laplacian” filter (contour detection) and an Identity filter. 

Together they form a new filter “h”, an “enhancement” filter. 

Let the 3×3 image Ie be defined by: 
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This image Ie is filtered by h.  

Here are all the steps to compute the output value of the central pixel IS(1, 1): 

IS(1,1)  = ∑
+

−=
∑
+

−=
−−

1

1i

1

1j
j)i,1(1eI.j)h(i,  

 = 1)i,1(1eI.h(i,1)0)i,1(1eI.h(i,0)
1

1i
1))(i,1(1eI.1)h(i, −−+−−+∑

+

−=
−−−−  

 = 

 +−++−++−− 1,0)(1e1,1).Ih(1,1)(1e1,0).Ih(1,2)(1e1).I1,h(  

  (1,0)eh(0,1).I(1,1)eh(0,0).I(1,2)e1).Ih(0, ++−+  

  

−+−+−−+ 1,0)(1eh(1,1).I1,1)(1eh(1,0).I1,2)(1e1).Ih(1,  

 = (0×13) + (-1×56) + (0×9) + (-1×45) + (5×0) + (-1×7) + (0×255) + (-1×125) + (0×4) 

IS(1,1)  = -233 

 

Warning: row and column indices of the input image are not the same as the indices of the 

convolution kernel. In the input image, indices run from 0 to M-1 (rows) and from 0 to N-1 

(columns). In convolution kernel, the element h0,0 is centered and the indices run from –I to +I 

(rows) and from –J to J (columns).  

 

Note that the bi-dimensional function « h
*
 », which is the symmetric of h with respect to (0, 

0), can be used to compute the output values of the pixel IS(m, n). The output values are thus 

defined as the correlation between  Ie and h
*
 : 

∑∑
∈ ∈
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Typical examples of convolution masks
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• DC filter Gain:

• Symmetric filter : h (-i,-j) = h (i,j)       then: convolution ≡ correlation

=> H (νX, νY) is a real transfer function (no phase term)

Σ Σ h(i, j) = H (νX = 0, νY = 0)
i j

Convolution masks: 

( ∼ circular: 45 pixels  ; rectangular: 11×11)

3×3 Mask 3×5 Mask 5×5 Mask

 

 

The shape of a convolution mask can be one of many kinds. The size of the convolution mask 

also defines the size of the neighborhood. Some filter supports are presented here: 3×3, 3×5, 

and 5×5. 

As in case of 1D signals, we define the frequency response H(νX, νY) of the filter. It depends 

on the horizontal (νX) and vertical (νY) spatial frequencies. H(νX, νY) is the 2D Fourier 

transform of the impulse response: 

 

H(νX, νY) = ∑∑
n m

[ ])
Y

m
X

n(2jπexpn),(mh ν+ν−  

 

The DC component H(νX = 0, νY = 0) can be computed as the sum of all the convolution 

kernel coefficients h(i, j): ∑∑=
i j

)j,i(hDC_Gain    (DC stands for direct current, an 

electrical engineering term). 

 

The exercise “FFT” details the methods to compute and display the spectrum image and the 

frequency response of a filter. The notion of spatial frequency is developed there. In the 

special case, when the filter is symmetrical, H(νX, νY) is a real frequency response. 

 

Note: in the following chapters we will use the term “transfer function” instead of “frequency 

response” (it is a misuse of language). 


