
Exercise Chapter 1– Introduction to Matlab

MATLAB is a high-level scientific calculation language and an interactive

environment for developing algorithms, visualizing and analyzing date or carrying out

numerical calculations.

When you start Matlab, by default you find yourself with a console, a workspace and a

command history. An editor is also available by using a simple edit command.

ACTIONACTIONACTIONACTION: Start Matlab and add your own working folder paths to the path list in the path

browser (don’t forget the subfolders). The pwd, cd, ls Unix commands are available.

Note: when a user runs a command in the console, Matlab will go looking in the folder that

you indicated in the path browser; if a function or a script matches that command, the first

one found will be the one used (so take care with the folder order and the names of scripts

and functions).

Exercise 1 – Operators

Between each exercise, we recommend that you use the clear and close all commands so that

you can empty the workspace and close all the figures.

1.1 – Enter the command a=[1 4 5 ;4 8 9], what does this command correspond to?

In the console, enter the a=rand(5) command. Then enter the help rand command to get a

description of the operation carried out by the rand function. Finally, enter the command:

a=rand(5) followed by a semi-colon « ; »

What difference can we observe in the console with the a=rand(5) command? Deduce from t

his the role of the « ; »in Matlab.

1.2 – In Matlab, the « : » operator is very useful. It can be used, among other things, to swap

elements from a row or a column of a matrix.

A word of caution: the index 0 does not exist in Matlab. the first element of a matrix is

accessed by an index of 1. For example array(1,1) for images accesses the value of the pixel

(1
st
 row, 1

st
 column). The first index is for the rows, the second index for the columns.

To fully understand these concepts, try the commands:

- a(2,1)

- a(1:3,1)

- a(:,2)

- a(1, :)

- a([1 4], :)

- a(1 :2 :5, :) (the 1:2:5 command sweeps the interval [1,5] by steps of 2)

Be careful however not to put a « ; » at the end of a row to visualize the results obtained in the

console.

1.3 – Matlab is an interesting tool for matrix calculations. The various classical matrix

operations (addition, multiplication, eigenvalues etc.) are there of course but there are also

element by element operations that are very useful in image processing; these are available

through a specific operator (for example: « .* », « ./ »).
Enter the following commands (without « ; » at the end of the line to see the results):

- a= [0 0 0; 1 1 1; 2 2 2]

- b=a+4

- c=a*b

- e=a.*b

Explain the difference between « c » and « e ».

ACTION:ACTION:ACTION:ACTION: Create a matrix A sized 4×4 using the method of your choice (use rand or enter

the items one by one). How can you access:

- the first row of A?

- the fourth column of A?

- the first three items of the fourth row in A?

Exercise 2 – Display

Matlab also offers a wide range of diverse and practical display possibilities. For example,

you can plot function on a logarithmic scale or view the values of a matrix as an image.

2.1 – A vector can be displayed using the plot command. Enter the help plot command to

obtain more information about this function and on functions with similar properties

(subplot, semilogx, etc.).

Try out the following commands:

- x=1:3:10

- plot(x) then plot(x,’r’)

- y=rand(4,1), then plot(y), then plot(x,y,’g’). Interpret the difference between these

two commands.

The plot function is very useful for obtaining for example the curves of different plane

functions.

2.2 – Displaying a matrix on the other hand corresponds to displaying an image. Each item (n,

m) in the matrix is considered as having the value of the pixel (n, m) with which it is

associated. Check this by entering the following commands:

- a=rand(10)*10 ; (so that the elements are not limited to [0,1])

- a=exp(a) ; (to obtain larger spans between the items of vector a)

- image(a)

Images can be displayed with the image, imagesc, and imshow functions. Try zooming with

the mouse; what kind of interpolation is used?

Exercise 3 – Writing scripts

The classic extension of a MATLAB file is .m. We can find two types of .m files: function

files (which we will look at later in the chapter) and script files, which are a set of commands

that can follow on from each other. Using script files is a way of saving your commands from

one Matlab session to the next. To open a script file:

- either type the edit command;

- or click: file ⇒ new ⇒ M-file;
- or click the "blank page" icon.

To run a script:

- either run a file_name command in the command window (without the .m

extension), making sure that the path list is consistent.

- or select lines from the .m file in the edit window and press the F9 key (a practical

way of running only part of a script).

ACTIONACTIONACTIONACTION: Enter all the commands from the section 1.2 into a script and save it (for

example: test.m). Run the script in the console and using the F9 key.

Exercise 4 – Data types

During this series of exercises, we are going to be using the Image Processing toolbox. This

contains a large number of existing functions (do not hesitate to look in the help using the

help or helpwin commands), as well as demonstrations. Sometimes we will use our own

functions and sometimes we will be using those from the toolbox. However, you need to be

careful with the data types. Classically and by default in Matlab, everything is a matrix of

double, but most of the functions in the Image Processing toolbox work with the uint8 type to

represent pixel value. You will need to convert the type each time this proves necessary (you

can easily see the type of your data in the workspace).

ACTIONACTIONACTIONACTION: From the image base, download the ‘FRUIT_LUMI’ image into your working

folder. Read and display the image file respectively using the commands imread and
imshow:

fruit = imread(‘FRUIT_LUMI.bmp’);

imshow(fruit);

By consulting the workspace, look at the size and data type. So as to display a sub-image that

corresponds to the top left corner of 64×64 pixels, test this command:
imshow(fruit(1:64,1:64));

The matrix fruit now represents the ‘FRUIT_LUMI’ image. Try adding this matrix directly to

any number (e.g.: fruit+8). The console returns an error message:

Function ’+’ is not defined for values of class ’uint8’

This is because the ‘+’ operator is defined only for "double" type elements. To carry out this

operation, you will need to force the "double" type for the elements in the matrix by typing:

double(fruit). Try again after this conversion.

Exercise 5 – Writing your functions

Use the function files as you would in any classical imperative programming situation. These

are also .m files. To use a function, you must call it with call parameters either in a script or in

another function.

ACTIONACTIONACTIONACTION: Use the template.m file to write your own max_min function that will find the

difference between the largest and smallest element in a matrix. You can use the Matlab max

and min functions. Be careful to save the name of your function (e.g. max_min) in a file of

the same name (example max_min.m).

Contents of the template.m file:

function[out1, out2] = template(arg1, arg2)

%--

%

% Description:

%

% Input:

% arg1:

% arg2:

%

% Output:

% out1:

% out2:

%

% Date:

% Modif:

%---

Note: You can use a function directly in the command window (providing that you use the

correct paths) or within a script or another function.

Solution to the exercise for the introduction to Matlab

 The first objective of this exercise is to make yo u familiar with
Matlab if you have never used it before and to remi nd current users of its
basic functions.

1 – Operators

1.2 –

The command a=[1 4 5 ;4 8 9] returns the matrix 2 ×3: 







981
541

.

The command a=rand(5) returns a matrix 5 ×5 made up of random values between
0 and 1.
Finally, in Matlab, the operator « ; » is used when you do not want to
display a command’s result in the console. This op erator is useful, for
example when you work with large matrices (such as images), which are
sometimes long to display and often not very repres entative of the data.

1.3 –

Working with the operator « : ».

1.4 –

In Matlab There are two types of matrix operations that use the « * » and
« / » operators:

- matrix multiplication and division,
- element by element multiplication and division (joi nt use with the

operator « . ».

The command c=a*b will perform a matrix multiplication of matrix « a » by

matrix « b » : ∑=
k

kjikij bac . .

The command e=a.*b will perform an element by element multiplication of

matrix « a » by matrix « b » : ijijij bae .= . The matrices have to be the same
size.

ACTION:

Create a matrix A with a size of 4 ×4 by directly entering these
coefficients one by one: A=[1 2 3 4;5 6 7 8;9 10 11 12;13 14 15 16]














=

 16 151413
1211109
8765
4321

A

The 1st row of A is given by the command: A(1,:).
The 4th column of A is given by the command: A(:,4).
The first 3 elements of the 4th row of A are given by the command:
A(4,1:3).

2 – Display

2.1 –

The command y=rand(4,1) returns a vector of 4 elements. By typing plot(y),
a curve appears. This curve represents the evolutio n of the vector « y »
depending on the indices of the vector elements. Ho wever it is possible to
modify the abscissas by creating an abscissa vector « x » in a given unit
of the same size as the vector « y »: you plot y ac cording to x by the
command plot(x,y).

2.2 –

Here is an example of the result obtained by typing the commands indicated
with a display by image(a).

The 10 ×10 sized matrix is represented here by 10 ×10 square pixels of
different colors. The colors correspond to the valu es of the various
elements in the matrix.
The zoom uses a zero-order interpolation of a neare st neighbor type. This
means that it is a simple imitation of an image pix el by several pixels on
the display screen.
Let’s consider for example a screen of 5 ×5 pixels, on which a 5 ×5 image is
represented. The screen pixels correspond to the re presented grid.

The figure below presents a ×2 zoom around the red pixel located in the
centre in the case of a nearest neighbor interpolat ion.

The red pixel is simply « duplicated » to twice its height and width on the
screen pixels.

3 – Writing scripts

Working on a script.

4 – Data types

Working with uint8 type data.

5 – Writing your functions

The Matlab « max » function (and respectively the « min » function) given

an M ×N matrix as input, returns a vector of size N of wh ich each element e k
is the maximum element (and for min the minimum element) of the matrix
column k.

Here is the solution function:

function [out] = max_min(A)

%--
% Description: difference between the max and min
% elements of a matrix A corresponding to a monochr ome
% image
%
% Input:
% A: the matrix on which the search occurs
%
%
% Output:
% out: the value of the difference
%---

out = max(max(A))-min(min(A));

