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Image digitalization

Sampling and Quantization

Chapter 1

MULTIMEDIA SIGNAL PROCESSING
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Sampling and Quantization

• Sampling
- Sample the value of the image at the nodes of a 

regular grid on the image plane.

- A pixel (picture element) at (m, n) is the image 

intensity value at grid point indexed by the 

integer coordinate (m, n)

• Quantization
- Is a process of transforming a real valued 

sampled image to one taking only a finite number 

of distinct values.

- Each sampled value in a 256-level grayscale 

image is represented by 8 bits.

• Computers handle discrete data.

255 (white)

0 (black)

 
 

 

In the previous resource (Image processing – Examples of applications) we briefly mentioned 

on the fact that digitalization implies a double discretization: 

- Firstly from the domain of the image definition: the 2D spatial domain for still images 

(respectively the 2D spatial domain and time for moving images): this is sampling. 

- Secondly from the image signal amplitude: the luminance signal in the case of 

monochrome images, the three color signals in the case of color images (representing 

“Red Green Blue” (RGB) or "Luminance, Chromatic1, Chromatic2": Y, Cr, Cb): this 

is quantization. 

 

We can only then speak of digital (or digitalized) images once this double discretization has 

been carried out, in space and in amplitude. The basic (or canonical) representation of an 

image corresponds to a 2D table, in which each element corresponds to a pixel. For a 

monochrome image, each pixel is encoded on 8 bits, for example, and in this way could take 

256 different values (effect of the quantization). In the case of a color image, the pixel will 

have three components that will represent the “Red Green Blue” (RGB) components or 

"Luminance, Chromatic1, Chromatic2" (YCrCb) ) according to the chosen model. 

 

Note: if R, G, B each take their value from [0, 255], and Y too, the two chromatic components 

Cr and Cb take their initial value from [-128, +127]. In practice, these are encoded by adding 

an offset of 128 so they have both a range dynamic of [0, 255]. 
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A Typical Image Processing Scenario

Recall: What is an Image?

– A function I(x,y) over two spatial coordinates of a plane

– To obtain digital data for digital processing:

• Sampling (spatially) and Quantizing 

the luminance values

• Can be done by single chip

i.e. Charge-coupled Device (capteur CCD)

Typical image processing scenario

 
 

 

The figure above shows the complete chain used to carry out any type of image processing:  

- The image is represented by a function of two continuous variables, these variables 

corresponding to spatial coordinates (x, y). 

- The first function is Sampling: we sample the continuous image signal (discretization 

of the spatial coordinates). 

-  The result is then injected into the Quantization function: for a monochrome image, 

we often choose 256 luminance levels. 

- The image is now digitalized, so we can apply the required image processing (cf. 

Processing), which could be binarization, contrast enhancement, etc. 

- The processed digital image is finally sent to a digital-to-analog converter (DAC) to 

obtain a signal that can be displayed on a monitor.  

 

The typical functional chain for image processing involves an operation for digitalizing the 

images that we will then process. This operation is sampling followed by quantization. These 

two notions were reviewed in connection with signal processing and electronics. However the 

design and achievement of these two stages in imaging are quite different because images are 

2D spatial signals and their representation for color images requires us to consider to 

digitalize the three components. 

 



Two important remarks: 

 

1 – The input signal I(x, y) is a 2D image. In images, the axis (Ox) and (Oy) are represented 

and oriented as shown below:  

 
The (Oy) axis is directed from the top of the image towards the bottom.   

 

2 – Once these two axis are discrete, we obtain « m » rows and « n » columns:  

 

 
 

In image processing, we need to speak of an image I(m, n) and not I(n, m). The coordinate 

order is modified because « m » corresponds to the discretization according to (Oy) and « n » 

according to (Ox). 
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Recall: 1-D Sampling

• Time domain

- Multiply continuous-time signal with periodic impulse train

• Frequency domain
- Duality: sampling in one domain � tiling in another domain

� the Fourier Transform of an impulse train is an impulse train (proper 

scaling & stretching)

 
 

 

Before moving on to sampling a 2D signal, we should recall some results about 1D signal 

sampling. The most widespread type of sampling in electronics and signal processing is time-

based sampling. The figure above presents the various results issued by such processing in the 

time and frequency domains. 

Note: ω=2πf , with ω : pulsation in rad.s-1 et f : temporal frequency in Hz 
 

� In the time domain: starting from a signal « x » depending on time, you must choose a 

sampling period « T ». The sampled signal xS(t) will thus be represented by its values 

at instants t = T, t = 2T, t = 3T, … Practically, to create such a sampling, you must 

carry out the product of convolution of the analog signal x(t) with a series of impulses 

p(t). These impulses correspond to the sum of the Dirac pulse (Dirac delta function) at 

time kT, k being an integer. 

 

� In the frequency domain: there is a duality between the time domain and the frequency 

domain. The fact of sampling a signal in one of these domains causes the periodization 

of the same signal in the other domain. Here X(ω) (resp. P(ω)) represents the 

frequency spectrum of x(t) (resp. p(t)). The sampling period T in the time domain has 

thus created the periodization (period 1/T) of the spectrum in the frequency domain 

(see the representation of XS(ω)).  

 

This duality between the two domains can create aliasing effects due to spectrum overlapping, 

so certain constraints must be met. 



  

 

 

The problems caused by the sampling of two-dimensional signals are most likely 

similar to those of one-dimensional signals. The Nyquist criterion is applied in the same way. 

However, an interpretation in a two-dimensional space is necessary to better understand the 

phenomena linked to sampling, such as the effects on the sampling pattern geometry.  

The figure above represents an example using a Fourier transform from a 2D limited 

bandwidth function (image Barbara). In this case we can work with a bounded spectrum. The 

spectrum spreads over a spatial frequency domain defined by two basis vectors.  
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Extension to 2-D sampling (1)

• Bandlimited 2-D signal

- its Fourier transform is zero outside a bounded region is

spatial frequency domain: |νX|< νX0 et | νY|< νY0

Example : the image Barbara and its spectrum
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Extension to 2-D sampling (2)

• 2-D Comb function

• Sampling vs. Replication (tiling)
- Nyquist rates (2.νX0 et 2. νY0) and Aliasing

)y.my,x.nx()y,x;y,x(comb
n,m

∆−∆−δ=∆∆− ∑
y.x/)y/,x/;,(comb),(COMBFT YXYX ∆∆∆∆νν=νν⇒− 11

 
 

 

The variations according to 
→
x (∆x) and the variations according to 

→
y  (∆y) are going to 

define the plane on which the 2D image is located. The sampling structure is regular (figure 

on the left) so the arrangement of sampled points (pixels) is regular in the plane (x, y). The 

position of the point at coordinates (m, n) is given by: n∆x + m∆y. 

In the frequency domain, points are defined by their "frequential" coordinates νX et νY. From 

a function f(x, y), to which we associate the amplitude spectrum F(νX, νY,), we will obtain 

after sampling: 

� ∑ ∑ ∆−∆−δ=
m n

e )y.my,x.nx().y,x(f)y,x(f  

� ∑∑ ν∆−νν∆−ν







∆∆=νν

m n

yyxxyxe ).m,.n(F
y.x

),(F 1  

For a bounded spectrum image signal, we can reconstruct the original (non-sampled) image, 

from the ideally sampled image if the original signal spectra do not overlap (central figure in 

opposition with the image on the right). To do this, we use an interpolator R of constant 

spatial frequential gain (spatial frequencies), equal to ∆x∆y in the F domain and zero outside 

of F, so that this has no overlapping with any of the translates of F. We then have the ideal 

two-dimensional linear interpolator: the Nyquist spatial interpolation filter. 

  



2005 D. BARBA 9

Sampling Lattice in Color Images and Videos

4 : 4 : 4 Sampling Structure 4 : 2 : 0 Sampling Structure

Orthogonal sampling structures

 

 

 The figure above presents two common structures for orthogonal sampling of color 

images: 

 

� A 4 : 4 : 4 structure: For each pixel, we have a luminance component and two 

chromatic components, Cr and Cb. In this case there is no sub-sampling of the 

chromatic components.  

 

� A 4 : 2 : 0 structure: For each pixel, we have a luminance component (Y) but the two 

chromatic components, Cr and Cb are only for a group of 2×2 luminance pixels. The 

chromatic resolution is divided by a 2 factor along the two spatial dimensions. This 

format (used in DVDs) reduces the vertical and horizontal resolutions.  

 

For these sampling structures, we transformed the RGB representation of the image into the 

YCrCb representation. The reduction in the spatial sampling frequency of the two chromatic 

components is made possible by the fact that, in natural images, the two chromatic 

components have a spatial frequency bandwidth much narrower than that of the luminance 

component. 
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Examples of image Sampling

(with zero-order interpolator)

Original Sampling

4 × 4 downsampling

16 × 16 downsampling
Image Lena

 

 

In this figure, we have represented the image "Lena" sampled with two different 

sampling structures. The image on the left is the reference image (spatial dimensions: 

256×256 pixels). The second image is sample with a sampling frequency four times lower for 

each of the two spatial dimensions. This means it is 64×64 pixels. For display purposes, it has 

been brought to the same size as the original using a zoom. This is in fact an interpolation of 

zero-order (each pixel is duplicated 4×4 times, so that on the screen it displays a square of 

4×4 identical pixels). A pixelization (staircase) effect clearly appears, but it is still possible to 

distinguish the different elements in the image (the face, the hat etc.). The third image (on the 

right) shows the result after a downsampling of 16 in relation to the original, following the 

two spatial directions. Again in order to see it at the same size, we have used zoom factor 16 

(interpolation of zero-order creating for each sample a reconstruction by 16×16 pixels of the 

same amplitude). The image is strongly pixelized and we can hardly distinguish the objects in 

the scene.  

 Now that we have looked at the two-dimensional sampling of a 2D signal (in this case 

an image), we now have to determine how to proceed with the quantization of the sampled 

image in order to get a digital image. 
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Quantization

Video and Image digitalization
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Quantization

• Scalar quantization

x
Quantization

y = Q(x)

continuous

X

Y

t0 t1

r0

ti-1 ti ti+1 tK-1 tK

ri-1 ri rK-1

Decision thresholds

Reconstruction level

• Quantization function
for tj ≤ x < t j+1 then y = rj ∀j = 0, …, K-1

and t0= x min ; tK = x max

discrete

 
 

 

The image is now sampled in the spatial domain. It is made up of a set of pixels. We 

now have to carry out a quantization so that each analog amplitude of the image signal is 

represented by a discrete value. We choose a set of predefined values called reconstruction 

levels, spread over the dynamic range [xmin, xmax] of the signal x to quantize. 

On the figure above, these reconstruction levels are defined by the sequence ( ) [ ]1K,0iir −∈  made 

up of K values. These levels are associated with decision thresholds defined by the sequence 

( ) [ ]K,0iit ∈  with t0=xmin et tK=xmax. Let’s take for example the case of a continuous magnitude 

signal « x » as input into the quantizer; the quantized signal « y » output will be defined by 

the condition: 

 

[ ]1..0 −∈∀ Ki , for 1ii txt +<≤ , then y = ri and t0 = xmin ; tK = xmax 

 

There are several ways of quantizing. The way of choosing the reconstruction levels and the 

decision thresholds is not necessarily a uniformly distributed type on [xmin, xmax], and strongly 

depends on the characteristics of the image signal being quantized. 
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Example of a quantization law

- Multiple-to-one mapping

- Want to minimize error

•Mean-square-error (ε)

- Let an input « u » with the 

probability density function pu(x)

 

 

The chart above gives an example of a quantization law. The quantizer input 

corresponds to « u », and the output to the signal « u’ ». The decision thresholds are given by 

the sequence (ti)i and the reconstruction levels are given by the sequence (ri)i. Quantization is 

a process that causes irreversible loss unlike certain forms of sampling that we have looked at 

previously. However, depending on how you configure the quantization, the human eye may 

not necessarily notice these errors. We must then try to minimize them. Typically, we seek to 

minimize the mean square error. By definition, this square error ε
2
 is given by the relation: 

[ ] ( )∫
+ −=−=ε 1L

1

t

t
u

222 dx).x(p.)x('ux)'uu(E  

Where: E stands for the statistical mean value and pu(x) stands for the probability density of u. 

By decomposing the integral, we have finally: 

( )∑∫
=

+ −=ε
L

1i

t

t
u

2

i
2

1i

i

dx).x(p.rx  

Quantization must be chosen so as to minimize the mean square error but we will see that 

other criteria linked to the image characteristics also are interesting. 
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• Allocate more values in more probable ranges

• Minimize error in a probability sense

- MMSE (minimum mean square error): 

� assign high penalty to large error

� square error gives convenience in math.:differential, etc.

• An optimization problem

-What {tk} and {rk} to use?

- Last time: necessary conditions by setting partial differential to zero

Which kind of quantization law to use? 0

 
 

 

The question asked here is to know what criteria must we take into account in order to 

correctly choose a quantization law. The figure above represents a quantizer Q with an input 

signal « u », and an output signal « u’ ». The decision thresholds are given by the sequence 

(ti)i and the reconstruction levels are given by the sequence (ri)i. the probability density 

function pu(x) is also represented. In this example, the quantizer is no longer linear: the 

thresholds and reconstruction levels are not regularly placed. Actually, by looking carefully at 

the probability density of « u », we can see that the function slope is gentler (or steeper) for 

certain values of ti than for others. When the slope is gentle, we can reasonably think that you 

need few reconstruction levels to represent the range of values described. Inversely, when the 

curve’s slope becomes steeper, numerous values are affected in a short time and so more 

levels of reconstruction are needed. We have also seen that to choose a quantization law, we 

also need to minimize the mean square error whose expression directly depends on the 

parameters (ti) and (ri). Optimizing quantization is achieved through the choice of decision 

thresholds and reconstruction levels. These parameters can be directly determined by 

minimizing the mean square error (calculation of partial derivatives etc.). 
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Optimal Quantization (1)

• Criteria of optimal quantization

– Mean Square Error  ( y = Q(x) )

ε2 = E { ( X-Y)2 } = ∫-∞ (x-y)2 px(x) dx

ε2 = ∑i ∫ (x-yi)
2 px(x) dx

ti+1 = (r i+ r i+1) / 2

minimization of ε2: ri= E {X / x∈[ ti , ti+1 ] }

ti+1

+∞

r0

X

Y

t0 t1
ti-1 ti ti+1 tK-1 tK

ri-1 ri rK-1

ti

• Special case: uniform probability density function: px(x) is constant

then ti+1 = (r i+ r i+1) / 2 and ri = (t i+ t i+1) / 2

 

 

 The optimal quantization criteria is linked to the minimization of the mean square 

error. The quantizer input corresponds to the signal X, and the output to signal Y. The 

reconstruction levels are given here by (ri), and the decision thresholds by (ti). We are going 

to try to determine the relations ensuing from this optimization and minimalization criterion: 

To minimize ε
2
, we calculate its partial derivatives: 

� In relation to ti : ( ) )²rt).(t(prt).t(p
t
²

iiiX

2

1iiiX

i

−−−=
∂
ε∂

−  

� In relation to ri : ∫
+ −−=

∂
ε∂ 1i

i

t

t
iX

i

dx).rx).(x(p.2
r
²  

By cancelling the first partial derivative, we obtain the relation: 
2
rr

t 1ii
1i

++=+  

By cancelling the second partial derivative, we obtain: 

0dx).rx).(x(p
1i

i

t

t
iX =−∫

+
 ⇔  ∫∫

++ = 1i

i

1i

i

t

t
iX

t

t
X dx.r).x(pdx.x).x(p  

    ⇔  [ [{ } i

t

t
Xi1ii rdx).x(p.rt,tx;XE

1i

i

==∈ ∫
+

+  

This means that minimizing the mean square error (optimal quantization) implies that the 

decision thresholds di and the reconstruction levels qi be given by the 

relations:

[ [{ }






∈=

+
=

+

+
+

1

1

1

,;

2

iii

ii

i

ddxXEq

qq
d

.  



These are the two relations obtained by Max. These show that the optimal quantizer for a 

signal using a non-uniform probability density function is not a linear quantizer.  

In the particular case of an input signal whose probability density is constant over [xmin, xmax], 

we have :
)(

1
)(

minmax xx
xpX −

= , and we obtain the relations: 










+=

+=

+
+

+

2
rr

t

2
tt

r

1ii
1i

1ii
i

 

The optimal quantizer is linear in this case:
K

xx
∆t minmax

i

−= .  

For a signal normalized over [0, 1], the minimized square error is worth: 
2

2

.12

1

K
=ε . 

We have seen that, in order to optimize the quantizer, we must minimize the mean square 

error of quantization with this criterion. Naturally, other criteria may be used, in particular 

those concerning the visual appearance. 
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• Maximum entropy quantization : H(Y) maximum si Y est 

à loi de probabilité constante

pi = ∫ px(x) dx = constant   ∀i =1, ….. , K

Optimal Quantization (2)

ti

• Psycho-visual quantization of images

- Perception of small stimuli on a background: ∆L / L = cst

- Cst ≅ 0.01  in luminance TV range (given by Weber law)

« Log »
Linear

Quantization

x y = Q’(x’) = Q(x)x’

X ’ X

X

ti+1

 
 

 

The characteristics of the human system of vision can be used to design the 

quantization law. For a usual stimulus of a given form and fixed ∆L amplitude, the visibility 

threshold ∆L / L is more or less constant (L being the luminance). In the TV luminance range, 

it varies slightly when L goes from black to white. For a quantization at the visibility 

threshold, we would have ri+1-ri=∆L. It becomes possible to use a uniform quantization on a 

compressed signal by a non-linearity « f » (see diagram above). You would of course need to 

carry out the reverse operation coming out of the quantizer with an expansion function.   

This non-linear compression function is defined by )/(.).()( 0
0

LxLogdxxLxf
x

L
λ≈∆= ∫ . For 

television, compression « f » is already used: it is the gamma correction given by γ
1

)( xxf =  

that compensates for the non-linear nature of CRT-type TV screens. We then apply a linear 

quantization over 256 leveks. In color television, we usually quantize the luminance and 

chromatic signals separately. From a perceptual point of view, the YCrCb space is more 

uniform than the RGB space. 

We can see by looking at television-type applications that despite the interesting properties of 

the optimal quantizer, it can sometimes be a better idea to use a non-linear compression 

function and then to use a linear quantization (even if the signal’s probability density function 

is not uniform). The "compression function – quantization – expansion function" series would 

be chosen in order to approximate the optimal quantization law. 
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Example: quantization of an image

256 – level 

quantization

16 - level quantization

4 - level quantizationImage Lena

 
 

 

This illustration shows examples of a quantization carried out on the image Lena: 

 

� For the image on the left: quantization is followed by a natural binary coding with 8 

bits per pixel. There are 2
8
 = 256 reconstruction levels to represent the magnitude of 

each pixel. It is the typical case of a monochrome image (only in gray scales). 

� For the middle image: quantization is carried out with a 4 bits per pixel coding, giving 

2
4
 = 16 reconstruction levels. Contours are well rendered but textures are imprecise in 

some cases. These are areas in the signal with a weak spatial variation, which suffer 

more visually due to the appearance of false contours (loss on the face and the 

shoulder).  

� For the image on the right: quantization is carried out with a 2 bits per pixel coding, so 

we have 2
2
 = 4 reconstruction levels. The deterioration seen on the previous image is 

even more flagrant here. 

 

We have now seen the various steps of image digitalization: double discretization by spatial 

sampling and then by quantization. The images are now digital and are ready to be processed 

with appropriate techniques, according to the required application.f 


