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Information data coding

Injective correspondence

Message {bn}

Information data coding ≡ coded representation of information

� Multiples roles of coding
• Preparing the transformation message => transmitted signal

• Adapting the source bit rate  - channel capacity  (compression )

• Protective encoding against transmission errors (error detection / correction)

• Encrypting  ( secretive communications )

• Tattooing ( ownership markers )

• Transcoding (alphabet changes, transmission constraints )

 
 

 

The goal of a communication system is to transport messages from a sender (the information 

source) towards a recipient (information user). The signal supporting the information being 

transmitted has to be compatible with the characteristics of the transmission channel. 

Information coding must establish an injective correspondence between the message produced 

by the source and the sequence of information {bn} sent to the transmitter.   

This information coding plays numerous roles: 

 

- It prepares the transformation of a message into a signal (carried out in the transmitter 

part: signal information encoding); 

- It adapts the source of information to the capacity of the transmitting channel;  

- It can be used to protect information against transmission errors (within certain limits), 

so as to detect and/or correct them (due to channel disturbances);  

- It can also be used in certain cases for secret communications (encrypting) and 

watermarking to protect ownership.  

 

A given transmission channel must be able to transport messages of various types that is why 

transcoding is necessary: this transforms the message representation from a codebook Mk 

using an alphabet Ak into a representation of the same message from a codebook M0 using 

alphabet A0. This particular alphabet is often the binary set {0, 1}, but this is not the only one. 

 

 

 

 



� Definitions

• Message sources S: production of a sequence of messages, 
each of them being selected in a set M of messages

( M : codebook of possible messages M = { m1 , m2 , ….}, 
the mi are also called "words")

• Message: finite sequence of symbols 

(characters taken from A : alphabet )

• Alphabet: finite set of symbols A = { a1, a2, ……, ak }

Information data coding

 

 

♦ Definitions: 
 

 A message is any finite set of characters taken from an alphabet A: a finite set of 

symbols (for example: letters, digits etc.). 

 

 A message source S is the system that produces a temporal series of messages mi, 

each of them taken from a set of possible messages M. M is called a message (or word) 

codebook. The transmitted message is in fact a text formed by the syntactic rules of 

elementary messages called words: M = {m1, m2, … }, each word is written by a fixed, finite 

set of symbols taken from the alphabet A. 

 

Depending on the applications, the message sources S can use dictionaries of very 

different types: from messages written using characters of the alphabet, numbers, punctuation 

and tab marks, to visual messages where the messages are digital images where for example, 

each word is a pixel represented as a sequence of 8 binary symbols taken from the alphabet 

{0, 1} (bit). 

 

 



Entropy of a source (SHANNON 1948)

• Definition  of uncertainty and of entropy

– Uncertainty I of an event E:

I(E) = -log2 Pr{E} Units:  bit ( BInary uniT if log2)

nat (NAtural uniT if Loge): 1 nat=1.443 bits

if source simple sn = > I(sn ) = ∑i=1;n I(m αi )

– Entropy H of a discrete random variable X:

H(X) = EX [ I(X) ] = ∑i=1;n pi I(Xi ) = -∑i=1;n pi log2(pi )

– Properties of entropy

• H ≥ 0 ;  H is continuous,  symmetrical;   H(p1, … , pN) ≤ log2 n

• if (p1, …, pn) and (q1,… qn)  are 2 distributions of probabilities

==> ∑i=1;n pi log2( qi / pi ) ≤ 0 car  Log x < x - 1

 
 

 

The uncertainty I of an event E of probability Pr( E ) is defined by:  

 

I ( E ) = log2
)E(Pr

1  = - log2 Pr( E ) 

 

• Notes: 

 

- if Pr( E ) = 1/2  then I ( E ) = 1 (unitary uncertainty) 

 

- if Pr( E ) = 1 then I ( E ) = 0: uncertainty is null for a certain event.  

 

- The uncertainty unit is bit (Binary Unit). It is not the same as the bit: Binary digit.  

 

- We can use the natural logarithm instead of the base 2 logarithm, therefore the unit is 

the nat (Natural Unit = 1.443 bit). 

 



We now consider that the events E are in fact realizations of a random discrete variable X. We 

define the entropy H as being the average uncertainty of the random variable X. If we 

consider in fact each event xi, i ∈ [1, n], as a realization of a random variable X (i.e. X is a 

random variable with values in { x1, x2, …, xn }) : 

 

H(X) = EX { I(X) } = ∑i=1..n  Pr{X = xi} . I(xi) = ∑i=1..n  pi.I(xi), with pi = Pr{X = xi} 

 

The entropy depends on the probability law of X but it is not a function of the values taken by 

X. It is expressed in bits (or nats) and represents the average number of bits necessary to 

binary encode the different realizations of X. 

 

Now let’s consider an information source S defined by a set of possible mi (codebook): S{m1, 

m2, …, mN}, and by a mechanism such as for emitting messages: 

 

sn = {mα1, mα2, …, mαn} with mα1 : 1
st
 emitted message, …, mαn : n

th
 emitted message. 

 

Warning: the index « i » in αi defines the temporal index in the sequence of messages emitted 

by the source. αi defines the index of the i
th
 message emitted in the codebook M of possible 

messages, generally: N ≠ n. 

 

The choice of mαi occurs according to a given probability law. The emission of a discrete 

source of information thus corresponds to a sequence of random variables Xi, i∈ [1, n]:  

 

The probability of sn can be expressed as a product of conditional probabilities: 

 

Pr(sn) = Pr{X1 = mα1} Pr{X2 = mα2 / X1 = mα1} … Pr{ Xn = mαn / X1 = mα1, …, Xn-1 = mαn-1} 

 

In the case of simple sources, the n random variables Xi are independent and of the same law, 

which gives: 

∀ (i, j) ∈ [1, n] x [1, N], Pr{ Xi = mj } = pj, et Pr{sn} = pα1.pα2…pαn 

 

⇒ I ( sn ) = - log2 Pr{sn} = - log2 ( pα1.pα2…pαn ) = ∑i=1..n - log2 pαi = ∑i=1..n  I ( mα1 ) 

 

I ( sn ) = ∑i=1..n  I ( mα1 ) 

 

In the case of a discrete source of « n » messages mi, where each message mi is associated 

with a probability pi, the entropy H of the source S is given by: 

∑
=

−=
n

1i

i2i plog.p)S(H   

 



♦ Properties of entropy: 

 

- As 0 ≤ pi ≤ 1 and 1p
n

1i

i =∑
=

, then H(X) > 0: the entropy is positive. 
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- The entropy of a random variable X with n possible values is maximal and is worth 

log2n when X follows a uniform probability law. By taking q1 = q2 = … = qn = 
n
1  

(uniform law), in the previous property: 
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- The entropy is continuous and symmetrical. 

 

For the rest of this course, we will systematically use the logarithm base 2. 

 

 

Simple example: 

 

Let’s consider a source S, of uniform law, that sends messages from the 26-character French 

(a,b,c, …, z). To this alphabet we add the "space" character as a word separator.  

The alphabet is made up of 27 characters: H(S) = -∑
=

27

1i

2 27
1log

27

1
= log2(27) = 4.75 bits of 

information per character. Actually, the entropy is close to 4 bits of information per character 

on a very large amount of French text. 
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Optimal statistical coding

• Definitions:                                                               

- S: discrete and simple source of messages mi with probability law

p = (p1, ………….…, pN) (homogeneous source)

- Coding of an alphabet  A = { a1, a2, ……, aq }

- Entropy of the source  H(S) and average length of code-words  E(n)

• MacMillan’s theorem:                                                               

- There exists at least one irreducible inverting code that matches:

H / log2 q ≤ E(n) < (H / log2 q) +1

⇒ Equality if pi of the form:   pi = q
-ni ( if q = 2   =>  ni = - log2 pi )

• Shannon’s theorem (1st theorem on noiseless coding)

H / log2 q ≤ E(n) < (H / log2 q) + ε

0 

 

In the previous resource, "Defining coding and properties" we saw that the objectives of 

coding are mainly to transcribe information and to reduce the quantity of symbols necessary 

to represent information. By optimizing the coding, we attempt to reduce the quantity of 

symbols as much as possible.  

 

Let’s consider a simple source of homogeneous information S = {m1, m2, …, mN} armed with 

a probability law p = { p1, p2, …, pN } où pi = Pr{m = mi}.  

If Mi is the code-word that corresponds to the message mi, we call ni = n(Mi) the number of 

characters that belong to the alphabet A (Card(A) = q) needed for the coding of mi, ni is thus 

the length of the code-word Mi. 

The average length of the code-words is then: E(n) = ∑
=

N

1i

ii np .  

The average uncertainty of a source is the entropy H. The average uncertainty per character of 

the alphabet A is equal to 
)n(E

H , so we get: 
)n(E

H ≤ log2q because alphabet A contains « q » 

characters. From this inequality, we deduce that E(n) ≥ 
qlog

H

2

. 

 



To optimize coding, we want to reduce E(n), the average length of the code-words. This 

average length cannot be lower than 
qlog

H

2

. Nevertheless, two theories show that it is possible 

to obtain equality E(n) = 
qlog

H

2

 and an optimal code: 

 

♦ Mac Millan’s theorem: 

 

An information source S with entropy H coded by an inverting way with an alphabet counting 

q characters is such that: E(n) ≥ 
qlog

H

2

 and there exists at least one irreducible code of a given 

law such as ≤ 
qlog

H

2

 + 1. Equality is reached if pi = q
-ni
 (i.e. ni = - logq pi) and we then have 

an optimal coding. 

 

Note: 

 

In the particular case of a binary alphabet {0, 1}, we have q = 2. If the relationship ni = - log2 

pi is true, we then have E(n) = H: the entropy is the bottom limit of the set of code-word 

average lengths and this lower limit is reached.  

 

♦ Shannon’s theorem of noiseless coding: 

 

Any homogeneous source of information is such as there exists an irreducible coding for 

which the average length of code-words is as close as we want to the lower limit 
qlog

H

2

. The 

demonstration of this theorem uses irreducible coding in blocks (block coding assigns a code-

word to each block of « k » messages of S, consecutive or not). 

 



Optimal statistical coding

• Fano - Shannon coding

• Arithmetic coding (block encoding, interval type encoding)

possibilities of on line adaptation

• Huffman coding

3 basic principles:

- if pi < pj  =>  ni ≥ nj 
- the 2 unlikeliest codes have the same length

- the 2 unlikeliest codes (of max length) have the same prefix of length 

nmax-1

 

 

The presentation above shows three types of codes that are close to optimal code: 

 

♦ Shannon-Fano coding: 

 

It tries to approach as much as possible the most compact irreducible code, but the probability 

pi is not usually equal to 2
-ni
, so the coding can only be close to optimal coding. 

The probabilities pi associated with the messages mi are arranged by decreasing order then we 

fix ni so that: ni ≥ 
i

2
p
1log  ≥ ni – 1. Finally, we choose each code-word Mi of length ni so that 

none of the previously chosen code-words forms a prefix (it avoids decoding ambiguity cf.: 

"classification of the codes"). 

 

♦ Arithmetic coding: 

The code is associated with a sequence of messages from the source and not with each 

message. Unlike Huffman coding, which must have an integer length of bits per message and 

which does not always allow an optimal compression, arithmetic coding lets you code a 

message on a non-integer number of bits: this is the most effective method, but it is also the 

slowest. The different aspects of this coding are more fully developed in the resource: 

"Statistical coding: arithmetic coding". 



♦ Huffman coding: 

 

Huffman coding is the optimal irreducible code. It is based on three principles: 

 

- if pj > pi then ni ≤ nj, 
- the two most unlikely words have equal lengths, 

- the latters are written with the same nmax-1 first characters.  

 

By using this procedure iteratively, we build the code-words Mi of the messages mi. 

 

 

- Example: 

 

Let be a source S = {m1, m2, …, m8} with a probability law: p1 = 0,4 ; p2 = 0,18 ; p3 = p4 =  

0,1 ; p5 =  0,07 ; p6 =  0,06 ; p7 =  0,05 ; p8 =  0,04. 

 

We place these probabilities in decreasing order in the column pi
(0)
 of the table below. We can 

see that in the column pi
(0)
 the probabilities of the messages m7 and m8 are the smallest, we 

add them and reorder the probabilities, still in decreasing order, to create the column pi
(1)
: 

 

 
 

Generally, we add the two smallest probabilities in the column pi
(k)
, then we reorder the 

probabilities in decreasing order to obtain the column pi
(k+1)

. Finally we get the following 

table: 

 

 



We assign the bits ‘0’ and ‘1’ to the last two elements of each column: 

For each message mi, we go through the table from left to right and in each column we can 

see the associated probability pi
(k)
 (blue path on the illustration below).  

The code-word Mi is then obtained by starting from the last column on the right and moving 

back to the first column on the left, by selecting the bits associated with the probabilities pi
(k)
 

of the message mi (green rectangles on the illustration below). 

 

For example, we want to determine the code-word M6 of the message m6. We detect all the 

probabilities p6
(k)
 : 

 

 
 



The code-word M6 is thus obtained by simply reading from right to left the bits contained in 

the green rectangles: ‘0’ – ‘1’ – ‘0’ – ‘1’. By following the same procedure for each message, 

we obtain: 

 
 

The average length of the code-words is equal to: 

E(n) = ∑
=

8

1i

ii np = 0,4×1 + 0,18×3 + 0,1×3 + 0,1×4 + 0,07×4 + 0,06×4 + 0,05×5 + 0,04×5 

E(n) = 2,61 

 

We can compare this size with the entropy H of the source: 

H = ∑
=

−
8

1i

i2i plog.p = 2,552 

 

The efficiency η of the Huffman coding for this example is thus 
2,61
2,552

 = 97.8 %. For 

comparison purposes, 3 bits are needed to code 8 different messages with a natural binary (2
3
 

= 8). For this example, the efficiency of the natural binary coding is only 
3

2,552
 = 85 %.  
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Arithmetic Codes

� Basic principles:

- the code is associated to the sequence of symbols mi

(messages), not to every symbol in the sequence.

- coding of intervals of type [ci, di [ for each symbol. 

- iteration on the selected interval for the next symbol of the 

sequence

- one codes the sequence of symbols with a real value on [0, 1 [.

 
 

 

Arithmetic codes allow you to encode a sequence of events by using estimates of the 

probabilities of the events. The arithmetic code assigns one codeword to each possible data 

set. This technique differs from Huffman codes, which assign one codeword to each possible 

event. 

The codeword assigned to one sequence is a real number which belongs to the half-open unit 

interval [0, 1 [. Arithmetic codes are calculated by successive subdivisions of this original unit 

interval. For each new event in the sequence, the subinterval is refined using the probabilities 

of all the individual events. 

Finally we create a half-open subinterval of [0, 1[, so that any value in this subinterval 

encodes the original sequence. 



Arithmetic Codes
� Definitions:

- Let S = {s1, s2, …, sN} be a source and pk = Pr(sk)

- [Lsk, Hsk [ is the interval corresponding to the symbol sk 

with: Hsk- Lsk = pk

� Encoding algorithm:

1) Initialization: Lc = 0  ; Hc = 1

2)   Calculate code sub-intervals

3)   Get next input symbol sk

4)   Update the code sub-interval

5) Repeat from step 2 until all the sequence has been encoded

 
 

 

Let S = {s1, …, sN} be a source which can produce N source symbols. The probabilities of the 

source symbols are denoted by: ∀∈[1, N], P{sk} = pk. 

Here is the basic algorithm for the arithmetic coding of a sequence sM = {sα1, sα2, …, sαM} of 

M source symbols (sαk stands for the k-th source symbol that occurs in the sequence we want 

to encode): 

 

• Step1: 

 

Let us begin with a current half-open interval [Lc, Hc[ initialized to [0, 1[ (this interval 

corresponds to the probability of choosing the first source symbol sα1). The length of the 

current interval is thus defined by: length = Hc - Lc. 

 

• Step 2: 

 

For each source symbol in the sequence, we subdivide the current interval into half-open 

subintervals [Lsk, Hsk [, one for each possible source symbol sk. 

The size of a symbol’s subinterval [Lsk, Hsk [ depends on the probability pk of the symbol sk. 

The subinterval length ( Lsk - Hsk ) is defined so that: Hk - Lk = pk, then: 

 

Lsk = Lc + length × ∑
−

=

1k

1i i
p  and Hsk = Lc + length × ∑

=

k

1i i
p . 



• Step 3: 

 

We select the subinterval corresponding to the source symbol sk that occurs next and make it 

the new current interval [Lc, Hc[: 






×+=
×+=

k
HslengthcLcH

k
LslengthcLcL  

 

• Step 4 : 

 

This new current interval is subdivided again as described in Step 2. 

 

• Step 5 : 

 

Repeat the steps 2, 3, and 4 until the whole sequence of source symbols has been encoded. 



Arithmetic Coding
Example

The source S= {-2, -1, 0, 1, 2} is a set of 5 possible motion vector values 

(used for video coding)

-2

-1

0

1

2

Null motion 

vector

� ‘Y’ is the random variable associated to 

the motion vector values

� With the following probabilities:

• Pr{Y = -2} = p1 = 0,1

• Pr{Y = -1} = p2 = 0,2

• Pr{Y = 0} = p3 = 0,4

• Pr{Y = 1} = p4 = 0,2

• Pr{Y = 2} = p5 = 0,1

We want to encode the motion vector sequence (0, -1, 0, 2)

 
 

 

Here is an example for encoding motion vectors of a video signal with an arithmetic code.  



Arithmetic Coding

Subdivisions of the current sub-intervals

sαααα1 = 0 sαααα2 = -1 sαααα3 = 0 sαααα1 = 2

 

 

To encode the sequence {sα1, sα2, sα3, sα4} = {s3, s2, s3, s5} = {0, -1, 0, 2}, we subdivide the 

unit current interval [0, 1[ into 5 half-open intervals, then we select the subinterval 

corresponding to the first motion vector that occurs in the sequence (value 0). This subinterval 

is the new current interval. We subdivide it and we select the subinterval corresponding to the 

next event (the motion vector -1).  

We repeat these steps for each source symbol of the sequence (here these source symbols are 

the motion vectors). Consequently, we can encode the sequence (0, -1, 0, 2) of vertical motion 

vectors by any value in the half-open range [0.3928, 0.396[. The value 0.3945 encodes this 

sequence; therefore we need 8 bits to encode this sequence: 

 

0.3945 = 0×2-1 + 2-2 + 2-3 + 0×2-4 + 0×2-5 + 2-6 + 0×2-7 + 2-8 
 

So we need 8/5 = 1.6 bits/symbol. 



1) Initialization: Lc = 0  ; Hc = 1

Arithmetic Coding

� Decoding algorithm

2) Calculate the code sub-interval length: length = Hc - Lc

3) Find the symbol sub-interval [Lsk, Hsk [ with 1 ≤k ≤N

such that:      Lsk ≤ (codeword – Lc) / length < Hsk

4) Output symbol: sk

5) Update the subinterval:

Lc = Lc + length × Lsk

Hc = Lc + length × Hsk

6) Repeat from step 2 until all the last symbol is decoded

 
 

 

The figure above describes the decoding algorithm of a codeword obtained after having 

encoded a sequence of source symbols with an arithmetic code. This decoding algorithm is 

performed for the previous example. Let us consider the codeword Mc = 0.3945: 

 

[ Algorithm beginning ] 

 

Step 1: 

 

We initialize the current interval [Lc, Hc[ : Lc = 0 et Hc = 1. 

 

Step 2: 

 

We calculate the length L of the current interval: L = Hc - Lc = 1. 

 

Step 3: 

 

We calculate the value ( Mc - Lc ) / L = 0.3945, and we select the subinterval [Lsk, Hsk[ so that 

Mc ∈ [Lsk, Hsk[. 

Here, the selected subinterval is [0.3, 0.7[. This subinterval corresponds to the half-open 

interval [Ls3, Hs3[. 

 

Step 4: 

 

The first symbol sαααα1 of the sequence is thus s3 (motion vector 0). 



Step 5: 

 

We create the new current interval [Lc, Hc[ for encoding the next source symbol: 

 

Lc = Lc + L × Ls3 = 0 + 1 × 0.3 = 0.3 

Hc = Lc + L × Hs3 = 0 + 1 × 0.7 = 0.7 

 

Step 2: 

 

We calculate the length L of the current interval: L = Hc - Lc = 0.7 – 0.3 = 0.4. 

 

Step 3: 

 

( Mc - Lc ) / L = (0.3945 – 0.3) / 0.4 = 0,2363.  

This value belongs to the subinterval [Ls2, Hs2[ = [0.1, 0.3[.  

 

Step 4: 

 

The second symbol sαααα2 of the sequence is thus s2 (motion vector -1). 

 

Step 5: 

 

Lc = Lc + L × Ls2 = 0.3 + 0.4 × 0.1 = 0.34 

Hc = Lc + L × Hs2 = 0.3 + 0.4 × 0.3 = 0.42 

Step 2: 

 

We calculate the length L of the current interval: L = Hc - Lc = 0.42 – 0.34 = 0.08. 

 

Step 3: 

 

( Mc - Lc ) / L = (0.3945 – 0.34) / 0.08 = 0.6812.  

This value belongs to the subinterval [Ls3, Hs3[ = [0.3, 0.7[.  

 

Step 4: 

 

The third symbol sαααα3 of the sequence is thus s3 (motion vector 0). 

 

Step 5: 

 

Lc = Lc + L × Ls3 = 0.34 + 0.08 × 0.3 = 0.364 

Hc = Lc + L × Hs3 = 0.34 + 0.08 × 0.7 = 0.396 

 

Step 2: 

 

We calculate the length L of the current interval: L = Hc - Lc = 0.396 – 0.364 = 0.032. 

 



Step 3: 

 

( Mc - Lc ) / L = (0.3945 – 0.364) / 0.032 = 0.9531.  

This value belongs to the subinterval [Ls5, Hs5[ = [0.9, 1[.  

 

Step 4: 

 

The fourth symbol sαααα4 of the sequence is thus s5 (motion vector 2). 

 

[ Algorithm end ] 

 

The decoding of the value 0.3945 allows us to rebuild the original sequence {sα1, sα2, sα3, sα4} 

= {s3, s2, s3, s5 } = { 0, -1, 0, 2 }. 

 

Contrary to Huffman codes, arithmetic codes allow you to allocate fractional bits to symbols. 

The data compression with arithmetic codes is thus more efficient. However arithmetic coding 

is slower than Huffman. It is not possible to start decoding without the entire sequence of 

symbols, which is possible in Huffman coding. 

The compression rate can also be increased by using probability models which are not static. 

The probabilities are adapted according to the current and the previous sequences: arithmetic 

coding can thus handle adaptive coding. 
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Information data coding

� Objectives

– Transcription of information to facilitate coding 

code ⇒ signal (Transcoding)

– Information compression

reducing information size

– Protection against transmission errors 

against loss and decision errors

– Keeping transmitted information secret

encryption

� Definition of a code

application of S in A = { a1, a2, ……, aq }

message mi ∈ S   ⇒ code-word  Mi ∈M finite sequences of A

 

 

Information coding consists of transcribing messages from an information source in the form 

of a sequence of characters taken from a predefined alphabet. The objectives of coding fall 

into four main categories: 

 

• transcribing information in a form that makes it easy to create a signal that can handle 

the information, or easy to handle the information automatically. To do this, different 

codes for representing the information are used depending on the envisaged 

application, with transcoding operations frequently being used; 

 

• reducing the number of information symbols needed to represent the information (in 

terms of the total number of symbols used): this is a space-saving role; 

 

• preventing quality loss (distortion, noise) caused by the transmission channel and 

which lead to errors when you reconstruct the information when it leaves the 

transmission channel (upon reception); 

  

• protecting confidential information by making it unintelligible except for its intended 

recipient.  

 



♦ Definition of a code: 

 

Given a set, called alphabet A made up of q characters ai : A = { a1, a2, …, aq }and M the 
finite set of finite sequences Mi of characters (for example: Mi = a10 a4 a7). 

Given a finite set of messages emitted by a message source S: S={ m1, …, mN }. 

 

A code refers to any application of S in A: coding of S through the use of the alphabet A. 

 

The element Mi of M which corresponds to the message mi of S is called the codeword of mi. 

Its length, noted as ni, is the number of characters belonging to A which compose Mi. 

 

The decoding of a sequence of sent messages mi involves being able to separate the 

codewords in a received sequence of codewords Mi. This is why we sometimes use a special 

spacing character in an alphabet. 



Information data coding (4)

Coding

• Alphabet A = { a1, a2, ……, aq }

• Finite set of messages S = { m1 , m2 , …., mi ,………… , mN }

C = { M1 , M2 , …., Mi ,………... , MN }

• Length of code-words: ni = n (Mi)

• Average length of code-words: E ( n) = ∑i=1;N pi ni
• Entropy of the source H:   H(p1, … , pN) ≤ log2 N
• Average quantity of information per character = H / E(n)

or H / E(n) ≤ log2 q   => E(n) ≥ H / log2 q 
• Flow of a source of information coded with an average D characters 
per second: R = D H/E(n)

=>  R ≤≤≤≤ D log2 q R in bits/second

 
 

 

From here on, we shall call the messages produced by the information source mi and Mi the 

codewords associated with them. 

We will call ni = n(Mi) the number of characters belonging to an alphabet A (Card(A) = q) 

necessary for coding mi, ni being the length of the codeword Mi. If the source uses N possible 

different messages, the average length of the codewords is given by:  

E(n) = ∑
=

N

1i

ii np , where pi = Pr{ mi }. 

H is the average uncertainty (i.e. the entropy) of the source S per message sent, so the 

average uncertainty (i.e. the entropy) per character (of the alphabet A) equals 
)n(E

H  and we 

have: 
)n(E

H ≤ log2q (because we have q characters in the alphabet A), so: E(n) ≥ 
qlog

H

2

. 

Finally, if the coded information source produces D characters per second taken from the 

alphabet A, 
)n(E

H  being the average information transported per character in bit/character, the 

character rate R of information is: R = D.
)n(E

H .  

This character rate is then limited by: R ≤ D.log2q. 
 



Coding and decoding information (5)

• Efficiency η of a code: η = nmin / E(n)   =>   η = H / ( E(n) log2 q )
• Redundancy ρ of a code : ρ = 1 - η
• Simple examples:  codes C1 and C2

• Constraints: separation of code-words & unambiguous reading 
of code-words  => regular and inverting codes

• Regular code:    if   mi ≠ mj ==> Mi ≠ Mj  (injective application)
• Inverting codes : 2 sequences of distinct messages

==> 2 sequences of distinct codes

if (mα1,…, mαi) ≠ (mβ1,…, mβj)  =>  (Mα1,…, Mαi) ≠ (Mβ1,…, Mβj) 

examples: fixed length codes; codes with separator

• Irreducible code: inverting code that can be decoded without any 
device Mi is not a prefix of Mj  ∀ i , j

 
 

 

Some definitions and properties linked to information encoding and decoding: 

 

Efficiency: 

 

For a given alphabet A, the efficiency of a code is η given by: 

η = 
qlogE(n)

H
E(n)

qlog
H

E(n)

E(n)min

E(n)

n

2

2min === , η ∈ [0, 1] 

Redundancy: 

 

The mathematical redundancy is defined by the factor ρ = 1 - η. Redundancy can be used to 
increase the robustness of the coding when faced with transmission errors for the coded 

information (error detection and correction).  



Here is a simple example: we consider a source of 4 possible messages {m1, m2, m3, m4} of 

probabilities: p1 = 0.5 ; p2 = 0.25 ; p3 =  p4 = 0.125, respectively. 

Given the following two codes C1 (simple binary codage) and C2 (variable length code): 

 

            Messages 
Codes m1 m2 m3 m4 

C1 0 0 0 1 1 0 1 1 

C2 0 1 0 1 1 0 1 1 1 
 

For C1 : η = 
2
1.75  = 0.875 and ρ = 1 - η = 0.125. 

For C2 : η = 
1.75
1.75  = 1 and ρ = 1 - η = 0. 

The code C2 is of maximum efficiency (unitary) while code C1 is not. 

 

Regular code: 

 

Any given code-word is associated with only one possible message (application S→A is 

bijective): if mi ≠ mj then Mi ≠ Mj. 

 

Inverting code: 

 

The code is inverting if two distinct sets of messages (mα1, …, mαi) and (mβ1, …, mβj) 

necessary lead to distinct codings (for example code of fixed length such as C1 and codes with 

separator). An inverting code is then a special case of a regular code.  

 

Irreducible code: 

 

This is a decryptable code that can be read directly without any special device (fixed length 

code, separator). To do that, any code-word Mi of a message mi must have no prefix that is 

another code-word Mj. 

 

In this way, we can create a hierarchical classification to characterize a code’s type: 

 

 



Code examples

Regular  codes / Inverting codes / Irreducible codes

1000100101C4

000001011C3

011110C2

00011C1

m4

0.125

m3

0.125

m2

0.25

m1

0.5

Messages

Proba.

� C1 is a regular code

� C2 is a non-inverting code

� C3 is an inverting and irreducible code

� C4 is only an inverting code

 

 

 

Here are four codes C1, C2, C3 and C4 given as examples of the previous definitions and 

properties. We suppose that the four messages m1, m2, m3, and m4 are distinct. 

 

The code C1 is not regular: m1 ≠ m2 but C1(m1) = C1(m2), and also C1(m3) = C1(m4). 
 

The code C2 is a non-inverting code: the two texts {m1, m2} and {m4} are different, but they 

lead to the same code « 01 ». 

 

The code C3 is an inverting and irreducible code: two distinct texts made up of sequences of 

messages, for example {m1, m3, m4} and {m1, m2} always lead to different codes and no 

code-word Mi = C3(mi) is prefixed by another code-word Mj = C3(mj) 

 

The code C4 is an inverting code but not irreducible: two distinct texts always lead to different 

codes but the code-words Mi = C4(mi) are the prefixes of all the code-words Mj = C4(mj) once 

i < j.  
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