
Example of non-linear filtering: Median filtering

Median filtering is a non-linear operation:

Odd window sizes are commonly used in median filtering:
3 × 3 ; 5 × 5 ; 7 × 7

Generally: median { xm + ym } ≠

median { xm } + median { ym }
example with signal sequences (length = 3):

example: 5-pixel cross-shaped window

For even-sized windows (2 K values): the filter sorts the values then
takes the average of the two middle values :

Output value (Kth classified value + (K+1)th classified value)
2=

Example of median filtering application

Median filtering using the full 3×3 neighborhood:

91 55 90
77 68 95
115 151 210

55
77 68 95

151

3×3 original image:

we sort the original image values on the full 3×3 window:
55 , 68 , 77 , 90 , 91 , 95 , 115 , 151 , 210

median value = 91
Median filtering using 5-pixel cross-shaped size:

We sort the original image values on the 3×3 cross window:
55 , 68 , 77 , 95 , 151

median value = 77

Comparison: median filter and averaging filter

Original image “Eight.tif” with added ‘salt-and-pepper’ noise then
filtered with a (3-by-3) averaging filter and a (3-by-3) median filter.

Original Image After Adding Noise

Noise Average

Median

The median filter does a better job of removing
‘salt-and-pepper’ noise, with less blurring of edges.

Observation:

Exercise Chapter 4 – Comparison: non-linear filtering vs. linear filtering

Unlike filtering by convolution (linear filtering), non-linear filtering uses neighboring pixels

according to a non-linear law. The median filter (specific case of rank filtering), which is used

in this exercise, is a classical example of these filters. Just like the linear filters, a non-linear

filter is performed by using a neighborhood.

1. To create a noisy image

Load the image BOATS_LUMI.BMP. Update the path browser.

The aim is to compare the effects of a linear and a non-linear filtering used to reduce the noise

in an original image.

The Matlab function imnoise allows you to add different classical noises to an image. Use this

function for computing the noisy image of BOATS_LUMI (use a “salt-and-pepper” noise).

Display the noisy image and explain how this kind of noise is added?

2. Application of a linear filtering

We want to reduce the noise in the image. Let us consider a (3 × 3) averaging filter for

reducing the noise. Its convolution kernel is:













1
1
1

1
1
1

1
1
1

.
9
1

Perform this filter (by using the Matlab function imfilter), and visualize the noisy image.

Interpret the result.

3. Application of a non-linear filtering

We want now to reduce the noise by using a (3 × 3) median filtering. You can implement this

filtering with the Matlab function medfilt2. Explain how this function works. Process the

noisy image by performing this median filtering and visualize the results. Explain the

differences between these results and the results of the linear filtering.

http://webdav-noauth.unit-c.fr/files/perso/ythomas/cours_unit/images/BOATS_LUMI.bmp

Exercise solution: Linear filtering vs. non-linear filtering

1 – Here are the commands to visualize the noisy im age BOATS_LUMI:

I=imread(‘BOATS_LUMI.BMP’) ; % to read the grayscal e image
IB = imnoise(I,'salt & pepper'); % to create the no isy image
figure(1)
subplot(1,2,1)
subimage(I)
title(‘Original Image’)
subplot(1,2,2)
subimage(IB)
title(‘Noisy Image’)

Here are the images displayed:

The ‘salt-and-pepper’ noise consists of random pixe ls being set to black or
white (the extremes of the gray level range).
This kind of impulse noise can be generated by imag e digitalization or
during image transmission.

2 – Here are the commands to perform the 3-by-3 ave raging filter:

% Averaging filter
N = ones(3)/9 ; % convolution kernel
If1 = imfilter(IB,N) ;
figure(2)
image(If1)
title('Noisy image filtered by a 3-by-3 averaging f ilter’)
v=0:1/255:1; colormap([v' v' v']); % LUT for displa ying in gray levels

Here is the image displayed:

The “salt-and-pepper” noise is not significantly re duced. We can still
easily distinguish the noisy pixels. Each output pi xel value is the mean
value of all the values of its neighboring pixels, therefore when a noisy
pixel is included in the neighborhood, its extreme value (0 and 255) is
used to compute the mean value:

All the pixels of this image are set to the luminan ce value 8 except one
noisy pixel which has the luminance value 255. The output value of the
surrounded pixel (and of all pixels whose neighborh ood contains the value
255) is equal to: (8 ×8+255)/9 ≈ 35. The output value of this pixel is thus
not representative of its neighborhood, the noise i s not enough reduced.
This linear filtering is not appropriate for reduci ng the impulse noise.

3 – Here are the commands to perform the median fil tering:

% Median filtering
If2 = medfilt2(IB,[3 3]) ; % 3-by-3 median filterin g
figure(3)
image(If2)
title('Noisy Image filtered by a 3-by-3 median filt er’)
v=0:1/255:1; colormap([v' v' v']); % LUT for displa ying in gray levels

Here is the image visualized:

The “salt-and-pepper” noise is significantly reduce d. This median filtering
does a better job of removing noise, with less blur ring of edges. The
filter sorts the neighboring values of a pixel, the output value is then
the median value of all these sorted values (non-li near operator):

Let us consider the previous example: the pixel val ues are sorted by
increasing order: 0, 8, 8, 8, 8, 8, 8, 8, 255. The median value is 8. The
extreme luminance values 0 and 255 have no effect on the output value by
using this non-linear filtering. The median filtering is efficient for
reducing the impulse noise.

Example of a morphological filtering application,
Rice Grains (1/2)

♦ Preprocessing:
b : Binarization and regularization of the shape

c : Deletion of the boundary objects (grains on the image boundaries)

a : Original Image (rice grains)

a : original image b : segmentation of a c : internal grains

e : Broken grains

f : Grains with connected components

d : Intact grains

♦ Separation and classification of the grains by
morphological operations:

Example of a morphological filtering application,
Rice Grains (2/2)

Possibility of measuring and counting the rice grains, etc.

d : intact grains e : broken grains f : connected components

Morphological closing to smooth and to regularize the shapes, then
binarization of the grayscale image by thresholding

Morphological opening along 2 known diagonal directions for detecting
the lines

Detection and localization of intersection points

Motion detection, measurement of sheet
deformations, etc.

Example of morphological filtering application,
metal sheets

Morphological filtering

♦ Objectives:

Obtaining sets of connected points having simple shape (binary image)

Obtaining principal connected components (in lower numbers)

Regularization of the shape of the image signal

♦ Applications:

Size filtering

Object counting

Object measurement

Morphological operations

Case of binary images

Chapter 4

NON-LINEAR FILTERING

Recall : classical binary operators

• operator AND : Z = X AND Y (notation Z = X . Y)
X Y Z
0 0 0
1 0 0
0 1 0
1 1 1

X Y Z
0 0 0
1 0 1
0 1 1
1 1 1

X Z
0 1
1 0

• operator OU : Z = X OU Y (notation Z = X + Y)

• operator NON : Z = X

X , Y , Z : Boolean variables ⇒ possible states : ‘0’ or ‘1’

A variable which can take only two states (true or false, turned on or turned off, top or

bottom, positive or negative, black or white, etc.) is called a Boolean variable. Typically we

allow the value ‘1’ to one of the two states, and the value ‘0’ to the other state.

Three classical binary operators are defined:

- the operator ‘AND’, the output value is ‘true’ only if both input values are ‘true’;

- the operator ‘OR’, the output value is ‘true’ if at least one of the two input values is

‘true’;

- the operator ‘NOT, the output value is the opposite value of the input value.

“Truth tables” (which define the operators) are displayed on the bottom figure. Commonly

we write “A . B” instead of “A and B”, and “A + B” instead of “A or B”.

Note that several other operators are defined from these classical operators: the operator

‘NOR’ (i.e. ‘not or’), the operator ‘NAND’ (i.e. ‘not and’), the operator ‘XOR’ (i.e.

‘eXclusive or’), …

� Concept :

• set theory description of images.

• take into account the shape of the image structured components.

• basic application: two-level image processing, extension to

multilevel image processing

� Operators :

• 2 basic operators⇒ “EROSION” and “DILATION”

• Combination of these 2 opertors

⇒ 2 complementary operators:

“OPENING” and “CLOSING”

• Operators depending on a structuring element.

Morphological filtering

Morphological filtering is based on mathematical morphology (set theory description of the

images). The morphological operators privilege the shape rather than the signal amplitude.

They can be used to process both binary images (two levels: white or black) and grayscale

images.

We will just present the binary morphological filtering here. This non-linear filtering is based

on two basic operators (erosion and dilation) and two complementary operators which result

from the combination of the two first basic operators (opening and closing).

A structuring element is used to define a neighborhood shape and size for morphological

operations, including dilation and erosion.

We will now define all these concepts.

Binary Image

• L(m,n) ∈∈∈∈ {0, 1} ∀∀∀∀(m,n) ∈∈∈∈ S image support

L = 0 “background” pixel

L = 1 “Object” pixel

� 2 categories : « Background », « Object »

• Object(s) : X

X = { p ∈ S / L(p) = 1 }

A binary image is an image whose pixels (m, n) take their value from among two possible

luminance values. These two possible values are conventionally 0 (background) and 1

(objects).

The objects ‘X’ are defined as the set of pixels ‘P’ with affix ‘p’ that belong to the image

support ‘S’ and such as their luminance value L(p) is equal to 1:

X = { p ∈S / L(p) = 1 }

A binary image can be created by different methods: a digitalization with only two

reconstruction levels, or a binarization of a grayscale image by using its histogram to choose

an appropriate threshold (cf. exercise « Binarization » of chapter 2).

- a - - b - - c –

1-D structuring element 2-D structuring elements

B = {p so that L(p) = 1}

� structuring element

symmetry:

Structuring Elements (binary images)

set of pixels at ‘1’ on a support with the origin located at

(0, 0) coordinates (red pixel)

� 3 typical examples:

“support center”

� Structuring element :

The structuring element B is a set of pixels at luminance value ‘1’. The structural element

includes generally the origin O(0, 0), but not necessarily.

Let B be a structuring element composed by a set of pixels P of affix p. We define then the

symmetrical structuring element B as being the set of pixels of affix ‘-p’.

Example :

Structuring Element

Erosion by (b)Erosion by (a)

(a) “4-
connected”
structuring
element

(b) “8-
connected”
structuring
element

Original Image
Example :

• X � B : set of pixels p in S such for every p, Bp is fully

included in the object X

Morphological Erosion (by B)

Notation X � B

Definition X � B = { p ∈ S so that Bp ⊆ X}

where Bp is the translation of B by p

The erosion of an object X by the structural element B is noted « XӨB ». Let Bp denote

the translation of B so that its origin is at p. The erosion of objects X by the structuring

element B is then the set of all pixels P(p) in the image support S such that Bp is a subset of X:

X B = { p∈S, so that Bp⊆X}

The figure above displays two erosions which are performed on the same original image but

with two different structuring elements:

- case a: 4-connected structuring element (the origin has 4 neighboring). Each pixel of

the image support which has the luminance value 0, or one of whose 4 neighboring

pixels has the value 0, is set to 0 after filtering.

- case b: 8-connected structuring element (the origin has 8 neighboring). Each pixel of

the image support which has the luminance value 0, or one of whose 8 neighboring

pixels has the value 0, is set to 0 after filtering.

We can observe that the two erosions remove the white pixels which are isolated in the

background and erode the edges of the objects.

(a) 4-
connected
structuring
element

(b) 8-
connected
structuring
element

Example :

Structuring Element

Original Image

Dilation by (b)Dilation by (a)

Morphological Dilation (by B)

Notation : X ⊕⊕⊕⊕ B

Definition: X ⊕⊕⊕⊕ B = { p ∈∈∈∈ S so that ∩ X ≠ ∅}

where is the symmetric of B translated by p

• X ⊕⊕⊕⊕ B : set of pixels p in S such for every p, has a

non-null intersection with X

The dilation of objects X by a structuring element B is noted « X⊕B ». Let Bp denote

the symmetric of B translated so that its origin is at p. The dilation of objects X by the

structuring element B is then defined as being the set of pixels P(p) so that Bp has a non-null

intersection with X:

X⊕B = { p∈S, so that pB ∩X ≠≠≠≠ ∅∅∅∅}

The figure above displays two examples of dilations:

- case a: 4-connected structuring element. Each pixel of the image support which has

the luminance value 1, or one of whose 4 neighboring pixels has the value 1, is set to 1

after filtering.

- case b: 8-connected structuring element. Each pixel of the image support which has

the luminance value 1, or one of whose 8 neighboring pixels has the value 1, is set to 1

after filtering.

Note that the dilation removes the holes which are isolated in the objects and dilates the object

edges by taking account of the structuring element shape.

Property: To erode X
C
 by B (X

C
 is the complementary object of X with respect to S) is

equivalent to dilating X by B. The erosion and the dilation are dual: X⊕B = (X
C
B)

C

Filtering by Erosion and Reconstruction
(by constrained dilations)

Structuring element B.

Ic = (…(((Ib ⊕⊕⊕⊕ B) AND Ia) ⊕⊕⊕⊕ B) AND Ia)... …….)

Up to idempotence of Ic

The image Ib is the start point for the first dilation in the series of dilations

Initial Image Ia Image Ib : Eroded of Ia by

the structuring element B

Ic: Reconstruction

from Ib and Ia

Objects (value 1)

Background

(value 0)

The figure above shows an example of image reconstruction by successive morphological

transformations T. These transformations are based on a first erosion by the structuring

element B then a series of dilations by the same structuring element. The transformation T is

defined by: “T(X) = (X⊕B) AND Ia”. The rebuilt image Ic is computed by a series of

transformations T up to idempotence of Ic: Ic=ToTo…oToT(Ib). This image reconstruction

allows you to keep only the large dark patterns of the original image Ia. The isolated small

patterns are removed.

Note: an idempotent transformation is a transformation that when composed with itself, gives

itself as result i.e. TοT(X) = T(X). That is the case here insofar as we compare the dilation

result with the initial image Ia (via the classical binary operator AND). This property ensures

the stability of the morphological filter.

Morphological Opening (by B)
Notation : X o B
Definition X o B = (X ���� B) ⊕⊕⊕⊕ B

���� 
Erosion then Dilation

Effects: Shape smoothing
- Deletion of small details at the object border
- Cutting of narrow isthms

Morphological Closing (by B)
Notation : X � B
Definition X � B = (X ⊕⊕⊕⊕ B) ���� B

���� 
Dilation then Erosion

Effects: Shape smoothing
- Filling up of narrow channels and small holes
- Connected components

Property: Idempotence
(X o B) o B = X o B (X � B) � B = X � B

By combining the two basic morphological operators which are the erosion and the dilation,

we define two new morphological transformations: the “morphological opening” and the

“morphological closing”. These two transformations are indempotent. We define:

♦ The morphological opening of X by B, noted: X o B.

This transformation corresponds to an erosion followed by a dilation, using the same

structuring element B for both operations:

X o B = (X B) ⊕⊕⊕⊕ B

The morphological opening smoothes the object borders and removes small objects while

preserving the shape and size of larger objects in the original binary image.

♦ The morphological closing of X by B, noted: X • B.
The related operation, morphological closing is the reverse: it consists of dilation followed by

an erosion with the same structuring element B:

X • B = (X ⊕⊕⊕⊕ B) B

The morphological closing smoothes the object borders too, it merges together the small

features in the image that are close together and the narrow channels and small holes are thus

filled up.

Here are the results obtained from an original binary image which is filtered by the four

morphological operators by using each time the same 8-connected structuring element:

Original binary image

 Eroded Image Dilated Image

 Morphological Opening Morphological Closing

The original binary image objects correspond to the white pixels: the face, hair, the shirt

collar, and the vegetation behind the character. Erosion erodes the object edges and removes

the isolated white pixels. On the other hand, dilation fills the holes up and dilates the edges.

These results are definitely visible on the vegetation and the white zones of character hair.

The morphological closing and opening smooth the object edges (face, vegetation, etc.). The

morphological opening performs initially an erosion, therefore some parts of the objects are

removed, and they could not then be dilated. In the image computed by the morphological

opening, several objects are smaller than the objects of the image computed by the

morphological closing (hair, etc.).

Exercise Chapter 4 – digital binary image processing by morphological filtering

The morphological analysis aims at modifying the shape of the objects in the image, for

example, for discriminating these objects according to their size, for filling the holes, etc.

♦ Recall:

The morphological processing uses the neighborhood of a pixel to compute its output value.

This neighborhood is defined by a structuring element which is a binary mask.

Example of a 4-connected structuring element (the center is surrounded):

0 1 0

1 1 1

0 1 0

The morphological processing are based on two basic operators: the erosion and the dilation.

Definition:

Let “S” be the image support. The coordinates of a pixel P are given by its affix p:

- The erosion of the object X by the structuring element B is noted “XΘ B”. The

erosion is define by: XΘ B = { p∈S, so that Bp⊆X} ;

- The dilation of the object X by the structuring element B is noted “X⊕ B”. The

dilation is defined by: X⊕ B = { p∈S, so that pB ∩ X ≠≠≠≠ ∅∅∅∅}.

- The erosion is the complementary operator of the dilation:

X⊕B = (X
CΘ B)

C

Where:

- X
C
 is the complementary object of X,

- B is symmetrical to the structuring element B (i.e. B (i, j) = B (-i, -j)),

- Bp denotes the translation of B so that its origin is at p.

You are going to use Matlab to perform morphological filtering. Open the Matlab help

window (command helpwin) and display the Image Processing Toolbox. The description of

each function used in this exercise is given here.

1. Binary image Erosion and Dilation

Update the path list in the path browser. Open a new file “M-file” in which you will type your

commands and of which each line (finishing with “;”) will be then interpreted. Load the

image CIRCUIT.TIF with imread.

1.1 – Binarize this image by performing your choice of method (cf. exercise Binarization,

chapter 2).

1.2 – Conventionally the binary image background is black (set to 0) and the objects are white

(set to 1), therefore you can create the binary inverse video image by using the operator

“~” (I = ~ I).

http://webdav-noauth.unit-c.fr/files/perso/ythomas/cours_unit/images/circuit.tif

1.3 – Create a structuring element. You can write it directly as a binary array (ex. SE =

ones(3), SE = [0 1 0;1 1 1;0 1 0], …). Erode the objects with the Matlab function

imerode. By looking at the Matlab help, define this morphological operator.

1.4 – In the same way, dilate the objects of the binary image with the Matlab function

imdilate and define this morphological operator.

1.5 – Erode or dilate the binary image with several various structuring elements. Observe the

results when the structuring element is not symmetrical with respect to its origin.

1.6 – We want to verify the duality relation between the erosion and the dilation. Create a first

binary image by eroding the background, then create a second one by dilating the objects.

Compare these two binary images and conclude.

2. Morphological Opening (erosion then dilation) of a noisy binary image

2.1 – Load the image CIRCUIT.TIF and add noise to it with the function randn. This function

allows you to generate a Gaussian N(0, 1) array that you can increase and add to the original

image.

Notes:

- The noise array dimensions must be equal to the original image dimensions;

- Convert your data (functions double and uint8).

2.2 – Binarize the original image and the noisy image, then compare them.

2.3 – Use a symmetrical structuring element. Erode then dilate the noisy image. The

combination of these two operators is the morphological opening. Why do this?

2.4 – What do you note if the structuring element is not symmetrical? Propose and test a

solution for rebuilding identically the objects. Idea: you must use two different structuring

element.

3. Morphological Closing then opening of a binary image.

3.1 – Load and binarize the grayscale image PEARLITE.TIF. Compute the inverse video

image.

3.2 – Perform the morphological closing of this binary image (imclose). Define this operator

(cf. Matlab help). You can use the Matlab function strel to create the structuring element

(this function generates structuring elements).

3.3 – Perform the morphological opening of the previous binary image (imopen). Define the

operator.

3.4 – Analyze the complete chain.

http://webdav-noauth.unit-c.fr/files/perso/ythomas/cours_unit/images/PEARLITE.tif

Exercise solution: Image Processing by Morphologica l Filtering

1.1 – Here is an example for binarizing the image CIRCUIT.TIF :

I = imread('CIRCUIT.TIF');
thres = graythresh(I) % computes a global threshold by using Otsu’s metho d
Ib = im2bw(I,tres); % binarization

1.2 – In Matlab, the operator « ~ » corresponds to the binary logical

operator ‘NOT’. You can thus create the binary inve rse video image by
typing the command: Ibi=~Ib. Here are the commands for displaying the
inverse video (on the right):

figure(1)
imshow(Ib)
Ibi =~ Ib;
figure(2)
imshow(Ibi)

1.3 – Let us consider, for example, the structuring element:












010
111
010

Here are the commands to erode the binary image Ibi and to display the
result:

SE = [0 1 0;1 1 1;0 1 0] ; % structuring element
Ier = imerode(Ibi,SE) ;
figure(3)
imshow(Ier)

The structuring element defines the neighborhood of each pixel: the
neighboring pixels are those equal to 1 within the structuring element. We
scan the original image and we apply the structurin g element to each pixel.
The output value of each pixel is the minimum value of all the pixels in
the input pixel's neighborhood. In a binary image, if any of the pixels is
set to 0, the output pixel is set to 0.
The following figure illustrates the erosion. The m orphological operation
is performed on the pixel (3, 2) with a 4-connected structuring element.

Here is the eroded image:

The erosion removes the white pixels which are isol ated in the background
and erodes the edges of the objects within the imag e CIRCUIT.

1.4 – Here are the commands to dilate the binary im age Ibi and for

displaying the result:

Idi = imdilate(Ibi,SE) ;
figure(4)
imshow(Idi)

The output value of each pixel is the maximum value of all the pixels in
the input pixel's neighborhood. In a binary image, if any of the pixels is
set to 1, the output pixel is set to 1.
The following figure illustrates the dilation. The morphological operation
is performed on the pixel (2, 4) with a 4-connected structuring element.

Here is the image obtained:

The dilation removes the holes which are isolated i n the objects and
dilates the object edges by taking account of the s tructuring element
shape.

1.5 – We erode the image with the following structu ring element:












000
110
110

Here the structuring element is not symmetrical. On ly the top right corners
are eroded.

The output image depends thus strongly on the struc turing element’s shape.

1.6 – We want to visualize that: “to dilate the obj ects is equivalent to

eroding the background then computing the inverse v ideo”, i.e.:

Ibi ⊕ SE = (Ibi CΘ SE) C

- we create Idi = Ibi ⊕ SE:
Idi = imdilate(Ibi,SE) ;

- we create Idi2= (Ibi CΘ SE) C:
Idi2 = ~imerode(~Ibi,SE) ;

The two output images are equal. You can verify thi s property by typing the
command: isequal(Idi,Idi2). The function isequal returns logical true ‘1’
if the input images are the same type and size and hold the same contents,
and logical false (0) otherwise.

2.1 – Here are the commands for loading the image CIRCUIT.TIF and for
adding to it a Gaussian noise N(0, 1):

I = imread('circuit.tif');
% Noise :
[nb_row, nb_col] = size(I); % image size
noise = 25 * randn(nb_row, nb_col);
IB = double(I) + noise;
% Conversion
IB = uint8(IB);

Results before (left) and after (right) having adde d the noise:

2.2 – Here is an example of a script to compute the binary image and the
noisy binary image:

thres1 = graythresh(I) ;
Ib = im2bw(I, thres1);
thres2=graythresh(IB) ;
IBb = im2bw(IB, thres2);
subplot(1,2,1)
subimage(Ib)
subplot(1,2,2)
subimage(IBb)

Here are the results:

2.3 – Let us consider an 8-connected structuring el ement. For performing
the morphological opening of the noisy image, we co mpute the inverse video
image (for displaying the objects in white and the background in black),
then we enter the commands:

SE = [1 1 1 ;1 1 1 ;1 1 1] ;
Iopen = imdilate(imerode(~IBb,SE),SE) ;
subplot(1,2,1)
subimage(~IBb)
subplot(1,2,2)
subimage(Iopen)

Here are the images displayed:

In this case, the interest of such a operation is t o initially erode the
objects of the image for removing the isolated pixe ls which correspond to
the noise. The result is then dilated to resize the objects. The noise is
thus reduced.

2.4 – If the structuring element is not symmetrical , the erosion reduces
the noise again (isolated pixels in the background) . For resizing the
original objects, we perform dilation by the same s tructuring element.

♦ Warning :

You must be really careful when you perform the dil ation:

X⊕ B = { p ∈S, so that pB ∩ X ≠ ∅}

The dilation of an object X by a structuring elemen t B is defined by the
symmetrical structuring element. The result is the set of poin ts P(p) so
that the translated symmetrical structuring element has a non-null
intersection with the object.
Let us consider, for example, a non-symmetrical str ucturing element:













000
011
011

The top left corner is eroded:

For resizing the object, we want to perform dilatio n.
Let us consider that the definition of the dilation is not based on the

symmetrical structuring element: X ⊕ B = { p ∈S, so that B p ∩ X ≠ ∅}.

Be careful: this definition is entirely false and a ims to show you a
classical mistake, made when you don’t consider the symmetrical
structuring element.

Here is the result obtained with the bad definition of the dilation. We
visualize that the lower right corner is dilated wh ereas we wanted to
dilate the upper left corner:

To rebuild the original top left corner, it is nece ssary to use the

structuring element:












110
110
000

 which is symmetrical to the original

structuring element.
In order to perform morphological openings and clos ings which guarantee the
reconstruction of the objects, the definition of the dilation is based on
the symmetrical structuring element . In the special case of a morphological
opening by a symmetrical structuring element, the p roblem does not exist
obviously.

Here is an example of a script for performing the m orphological opening of
the noisy binary image Circuit by a non-symmetrical structuring element:

SE1 = [1 1 0 ;1 1 0 ;0 0 0]
SE2 = [0 0 0 ;0 1 1 ;0 1 1]
Iouv = imdilate(imerode(~IBb,SE1),SE2) ;

Here are the results:

The noise is reduced and the output image’s objects are the same size as
the input image’s objects.

3.1 – Here are the commands for loading, binarizing and computing the
inverse video of the grayscale image Pearlite.tif:

I = imread(‘pearlite.tif’);
L = graythresh(I)
I = ~im2bw(I,L);

3.2 – For performing the morphological closing of t his image, we create a
structuring element with the Matlab function strel:

SE = strel('disk' , 6)

Here is the result you can visualize in the command window:

The morphological closing of the image is computed by typing the command:

Iclos = imclose(I,SE);

Here is displayed the result:

The morphological closing smoothes the object borde rs, it merges together
the small features in the image that are close toge ther and the narrow
channels and small holes are thus filled up.

3.3 – For performing the morphological opening of t he previous image, we
use the Matlab function imopen:

Im = imopen(Iclos,SE);

We obtain the following result:

The morphological opening smoothes the object borde rs and removes small
objects while preserving the shape and size of larg er objects in the
original binary image.

3.5 – The combination of the morphological closing with the morphological
opening allows you to extract the large objects wit hin the binary image:
the image is segmented. These two operators are typ ically used for
smoothing the object edges, for removing objects or for filling holes. The
structuring element shape must be chosen according to the size and the
shape of the objects that we want to modify.

Morphological Filtering of grayscale images

Direct extension of binary morphology through the notion of shadow (or
sub-graph) of the image function

• gray level « f » of a pixel P : f (m, n) where (m, n) is the affix of P

example (case of 1-D signal):

Definitions:

• sub-graph « U (f) » : U (f) = { (m, n, l), l∈R, so that: l ≤

f (m, n) }
• reconstruction T of the image « f » from its sub-graph U (f):

f (m, n) = T [U (f)] = Supl { l so that (m, n, l) ∈

U (f) }

n

f (n) U (f)

Erosion of a grayscale image

The erosion (noted Ө) of a grayscale image « f » by the structuring
element « B » is defined from the sub-graph notions:

min
68 , 90 , 91 , 95 , 151

(f Ө

B) (P) = 68

• f Ө

B = T [Y] = Supl { l so that (m, n, l) ∈

Y }
• Y = U (f) Ө

U (B)

Commonly we choose a plane structuring element which has zero
value

on its support(f Ө

B) (P) = Min { values of the P-neighborhood }

n
115 91 77
95 68 90
55 151 210

example :

m

Original Image

Ө

Structuring Element
(4-connected)

∗
- Classified values of the

neighborhood :-
-

-

Dilation of a grayscale image

The dilation (noted ⊕) is also defined from sub-graph notions:

max

55 , 68 , 77 , 90 , 91 , 95 , 115 , 151 , 210

(f ⊕

B) (P) = 210

• f ⊕

B = T [Y] = Supl { l so that (m, n, l) ∈

Y }

• Y = U (f) ⊕

U (B)

If you consider a plane structuring element which has zero value
on its support:

(f ⊕

B) (P) = Max { values of the P-neighborhood }

n
115 91 77
95 68 90
55 151 210

example:

m

Original Image

⊕

Structuring Element
(8-connected)

∗
Classified values of the

neighborhood:
- - -

-
-
-

-
-

Examples of morphological filtering
(full 3×3 structuring element)

Original image

Erosion

Dilation

The erosion of grayscale images decreases the
luminance value of the pixels which have low-
intensity neighborhoods

Note:

The dilation of grayscale images
increases the luminance value of the
pixels which have high-intensity
neighborhoods

Observation:

Exercise Chapter 4 – Morphological Filtering of grayscale images

In this exercise we want to extend the morphological filtering to the grayscale images. Load

the grayscale image CAMERAMAN.TIF et update the path list in the path browser.

♦ Note: we consider for the binary images that the objects are set to 1 and the background is
set to 0, therefore we must often inverse the binary natural images. In the case of the grayscale

natural images, the objects are rather dark and the background is rather white. We perform

also an inverse video transformation with the Matlab function imcomplement (type help

imcomplement fore more information). We obtain thus white objects and a dark background.

Morphological filtering of grayscale images

1 – Erode the image Cameraman.tif (imerode) by the following structuring element:

SE=strel('ball',5,5).

Display the result and compare with the original image. Define this operator thanks to the

Matlab Image Processing toolbox.

2 – In the same way, dilate the original image Cameraman.tif (imdilate) by the same

structuring element. Display the result and compare with the original image. Use the Matlab

Image Processing toolbox for defining this operator.

3 – Perform a morphological opening then a morphological closing of the original image

Cameraman.tif. Observe and interpret the obtained results.

http://webdav-noauth.unit-c.fr/files/perso/ythomas/cours_unit/images/cameraman.tif

Exercise solution: Morphological filtering of grayscale images

1 – Here are the commands for eroding the original image and for comparing
the result with the original image:

% Image loading
I = imread(‘cameraman.tif’) ;
Ic = imcomplement(I); % inverse video of original image
figure(1)
subplot(1,2,1)
subimage(I)
title(‘Original image’);
subplot(1,2,2)
subimage(Ic)
title(‘Original image (inverse video)’);

% Erosion
SE = strel('ball',5,5) % structuring element
Ierod = imerode(Ic,SE);
figure(2)
subplot(1,2,1)
subimage(Ierod)
title(‘Eroded image (inverse video)’);

% Display the eroded grayscale image without invers e video effect
subplot(1,2,2)
subimage(imcomplement(Ierod))
title(‘Eroded image’);

Here are the results:

The erosion of grayscale images decreases the lumin ance value of the pixels
which have low-intensity neighborhood (you can visu alize this phenomenon on

the images with inverse video effect). The neighbor hood depends on the
structuring element. The pixels of the input image are scanned: each pixel
is considered as the origin of the structuring elem ent (by translation).
The output value of each pixel is then equal to the minimal value of its
neighboring pixels.

2 – Here are the commands for dilating the original image and for comparing
the result with the original image:

% Dilation
figure(3)
Idilat = imdilate(Ic,SE);
subplot(1,2,1)
subimage(Idilat)
title(‘Dilated image (inverse video)’);
subplot(1,2,2)
subimage(imcomplement(Idilat))
title(‘Dilated image’);

We display the following results:

The dilation of grayscale images increases the lumi nance value of the
pixels which have high-intensity neighborhood (you can visualize this
phenomenon, on the images with inverse video effect). The output value of
each pixel is the maximal value of all its neighboring pixels.

3 – Here is an example of a script for performing t he morphological opening
and for comparing the result with the original imag e:

% Morphological opening
figure(4)
Iopen = imopen(Ic,SE);
subplot(1,2,1)
subimage(Iopen)
title(‘Morphological Opening (inverse video)’);
subplot(1,2,2)
subimage(imcomplement(Iopen))
title(‘Morphological Opening’);

Here are the results:

The morphological opening consists of erosion follo wed by the dilation of
the original grayscale image. The morphological ope ning removes the white
pixels which are isolated and smoothes the contours . We also visualize a
segmentation of the objects within the image.

Here is an example of a script for performing the m orphological closing:

% Morphological closing
figure(5)
Iclose = imclose(Ic,SE);
subplot(1,2,1)
subimage(Iclose)
title(‘Morphological Closing (inverse video)’);
subplot(1,2,2)
subimage(imcomplement(Iclose))
title(‘Morphological Closing’);

Here are the images displayed:

The morphological closing consists of dilation foll owed by the erosion of
the original grayscale image. The morphological clo sing removes the dark
pixels which are isolated and smoothes the contours .

Chapter 4 – Non-linear Filtering

TEST

Exercise 1:

We want to perform several different filters for processing the following 5 × 5 image:

This image is a small portion of the original image “Boats” and contains a part of the fishing

boat’s boom. Here is the 5 × 5 matrix which contains the luminance values of this portion:

175 150 114 86 79

156 119 91 80 113

132 93 80 96 174

96 85 87 165 193

87 82 153 192 194

We do not take account of the boundary effects and we consider only the results obtained by

filtering of the 3 × 3 central pixels:

X X X X X

X ? ? ? X

X ? ? ? X

X ? ? ? X

X X X X X

Fill this matrix for each of the following cases:

- median filtering using the full 3×3 neighborhood,
- median filtering using the 5-pixel cross-shaped neighborhood,

- erosion by a full 3×3 structuring element,
- dilation by a full 3×3 structuring element,
- morphological closing by a 5-pixel cross-shaped structuring element..

Exercise 2:

In Matlab, create the functions for dilating and for eroding an image (do not take account of

the boundary distortions). These two functions have two optional inputs: the original image

that we want to filter and the structuring element. The structuring element’s size will be less

than or equal to 3 × 3.

♦ Examples:

By using your two new functions, create the functions for performing the morphological

closing and the morphological opening.

Test your four functions by processing the image “Boats”. Compare the results with the

results that you obtain with the Matlab functions imdilate, imerode, imclose, and imopen.

	Median filtering [Concept]
	Exercise on median filtering
	Binary morphological filtering [Concept]
	Binary morphological filtering
	Exercise on binary morphological operators
	Morphological filtering for grayscale images [Concept]
	Exercise on multilevl erosion and dilation
	Test of the chapter 4

