Chapter 3

Fundamental of Image Processing
Linear Filtering

The Concept of Neighborhoods

The Concept of Neighborhoods
* Point P: affix p = (m, n)

* Neighborhood: V(P) = {P’ connected to P}

0 n N -1
: i
B
o o e o / P
mil---- o o @‘o/o .
sy
M -1
Discrete image domain
Examples: 4-N = = 8-N O -
4-connected neighborhood 8- connected neighborhood

Image processing is fundamentally based on techniques using neighborhoods. An
image processing which is performed at the affix p of the pixel P depends not only on this
pixel P but also on pixels in its neighboring area. Let us consider a pixel P whose location in
the image is defined by the coordinates (m, n). Its affix is thus p = (m, n). A neighborhood
V(P) of the pixel P can be defined by a set of pixels P' that are connected to P.

The pixel P (circled in the figure) belongs to its own neighborhood V(P).
We must here define the concept of connectivity: the criteria that describe how pixels within a
discrete image form a connected group. Rather than developing this concept, we show here in
the top figure the two most common examples:

- a “4-connected” neighborhood: the surrounded pixel has only four neighboring pixels.

The distance between the surrounded pixel and any pixel of its neighborhood is d4 ;

- a “8-connected” neighborhood: the surrounded pixel has eight neighboring pixels.

The distance between the surrounded pixel and any pixel of its neighborhood is ds ;

We define the two following distances in the case of a digital neighborhood (square sampling
structure):

" AP, P)=[m-m’[+|n—n’]
= dg(P,P)=Sup(|m-m’|,[n—n’[).

Neighborhood operators

| e | s
Linear filters (convolution) —» h >

» Transverse filter: h is the 2D impulse response called also the
Point Spread Function (PSF) .

* Finite Impulse Response filter (FIR)
Is(m,n) =2 2 h(i,j) Ie(m—i,n—})

(1)) €EV(P)

n Ng

: P : p
LT e / S

" |-t Mg,
Neighborhood V(P,)
* Infinite Impulse Response filter (IIR) le s
Is(m,n)=p1-x > Yawple(m=itn=j)= > > bisls(m=i-1,n—j-1)
’ @, jHov(p) 1,)Huv'(PY)

A linear filter builds an output image Is from an input image I.. Typically Is is the same size
as l.. Each pixel Pg (affix ps = (ms, ng)) within the output image Is is computed from the
neighboring pixels V(P.) of point P, (affix p. = (m, n)) in the Input image I.. Generally: ps =
Pe, 1.6. m = mg, and n = ns.
Let us consider a transverse filter (the simplest case): the output value of the pixel Pg is
computed as a weighted sum of neighboring pixels V(P.). Linear filtering of an image is thus
accomplished through an operation called convolution.
Here is the example for a transverse filter where the output value Is(m, n) of the pixel Ps is the
linear sum of the values I, (m, n) of the neighboring pixels P., weighted using the coefficients
h (i, j) of the Point Spread Function (PSF):
Im,n)=>" > h(i,j).Je(m=i,n~j)
(1, OV (P,)

Note that the neighborhood size is thus defined by the Finite Impulse Response (FIR) « h ».
There are also recursive filters. To compute the output values of the pixels Ig is more complex
because the linear combination depends on:

- the neighborhood of I. (m, n), the associated set of coefficients is {a; ;};

- previously-calculated output values of Is(m, n) go back into the calculation of the

latest output Is(m n). The associated set of coefficients is {b;;}.

Z Za” [e(m-i',n—j")— Z Zbuls(m—l—l n—j-1)
LIDOvV(Pe) (i,) 0v (pg)

The result depends on the way you choose to scan the image Ie (causality) because that
directly influences the previously-calculated values Is (m, n).

Ig(m, n)

Example — Convolution — Correlation

Example : filter support of size (3 X 5) (3 in vertical and 5 in horizontal)
hoy—2 hoy-y hoyo hoyp hogp

Convolutionkernel : h =| ho-2 ho-1 hoo hoj1 hop2
hi-2 hy-1 hip hig hi2
Convolution 4]
I[s(mn)= >, > h(i,j)Je(m~i,n—])
j==2 i=-1
Correlation Let h*(i,j)=h (-1,9)
(=> symmetric of h with respect to (0,0))
+2 +
Ls(mm)= ¥ Fh¥(i,j)de(m™* i, n+j)
j==2 i=-1

hj, h; by hy; h,

h™ = hop, hy1 hgp ho hoo
hyo hyy hyo hyg hoo

In the case of linear filtering using convolution, the filter is completely characterized by the
coefficients { h(i,j) } (which can also be written { h;; } to remind us that and “)” are
discrete variables). These coefficients define the convolution “kernel” of the filter.
This kernel defines:
- the neighborhood V(P.) to use (in the example it is a (3%5) neighborhood where the
position (0,0) must be centered on P.);
- the respective weightings h(i, j) of each neighboring pixel needed to calculate the new
value Ps.

(1344
1

When the size of the rectangular neighborhood support (I, J) and the weightings are known,
we can calculate all the pixels of the image Is:

Ig(m,n)=> "> h(i,j).I(m=i,n=j)

ion o1

Note: When computing an output pixel at the boundary of an image, a portion of the
convolution kernel is usually off the edge of the image I.. It is thus necessary to specify
“boundary conditions” to process border distortions (simple solution: to consider only the
pixels in the image). Some ways of dealing with the boundaries are described in the exercise:
“Linear filtering” in this chapter.

For example, let us consider a linear filter « h ». Its convolution kernel is:
0 -1 0
-1 5 -
0 -1 0

In fact this filter is the sum of a “Laplacian” filter (contour detection) and an Identity filter.
Together they form a new filter “h”, an “enhancement” filter.

Let the 3%3 image I. be defined by:
4 125 255
7 0 45

9 56 13

This image I is filtered by h.
Here are all the steps to compute the output value of the central pixel Is(1, 1):
Is(1,1) = +21 Jrzl h(i,j) . To(1-i,1-j)

i=—1 j=-1

= Jil h(i,~1) . (1=, 1= (=1)) +h(i,0) . (1=, 1-0)+h(i, 1) . Io(1-i,1-1)

1=

= [h(—l,—l).le(1+l,2)+h(—1,0).Ie(1+l,1)+h(—1,1).Ie(1+l,0)

+ h(0,-1).1¢(1,2) +h(0,0).1o(1,1) +h(0,1).1,(1,0)
+ h(l,—l).Ie(l—l,z)+h(1,0).Ie(1—1,1)+h(1,1).Ie(1—1,0)}

= (0X13) + (-1X56) + (0X9) + (-1x45) + (5X0) + (-1X7) + (0x255) + (-1x125) + (0x4)
Is(1,1) =-233

Warning: row and column indices of the input image are not the same as the indices of the
convolution kernel. In the input image, indices run from 0 to M-1 (rows) and from 0 to N-1
(columns). In convolution kernel, the element hy is centered and the indices run from —I to +I
(rows) and from —J to J (columns).

Note that the bi-dimensional function « h* », which is the symmetric of h with respect to (0,
0), can be used to compute the output values of the pixel Is(m, n). The output values are thus
defined as the correlation between I and h :

Is(m,n)=> "> h*(i,j).Je(m+i,n+j)

il jo)

Typical examples of convolution masks

3x3 Mask 3x5 Mask 5x5 Mask

Convolution masks:
(Ocircular: 45 pixels ; rectangular: 11x11)

« DC filter Gain: 2. 2 h(i, j) =H (v4 = 0, v, = 0)
i
» Symmetric filter : h (-i,-j) =h (i,j)) then: convolution = correlation

=>H (Vy, Vy) 1s a real transfer function (no phase term)

The shape of a convolution mask can be one of many kinds. The size of the convolution mask
also defines the size of the neighborhood. Some filter supports are presented here: 3x3, 3x5,
and 5x5.

As in case of 1D signals, we define the frequency response H(Vx, Vy) of the filter. It depends
on the horizontal (Vx) and vertical (Vy) spatial frequencies. H(Vx, Vy) is the 2D Fourier
transform of the impulse response:

H(Vx,vy) = 3.3 h(m, n)exp-2j(nvy +mvy,)|
The DC component H(vx = 0, vy = 0) can be computed as the sum of all the convolution
kernel coefficients h(i, j): Gain_DC:ZZ h(i,j) (DC stands for direct current, an
i
electrical engineering term).

The exercise “FFT” details the methods to compute and display the spectrum image and the
frequency response of a filter. The notion of spatial frequency is developed there. In the
special case, when the filter is symmetrical, H(Vx, Vy) is a real frequency response.

Note: in the following chapters we will use the term “transfer function” instead of “frequency
response” (it is a misuse of language).

| Exercise Chapter 3 — Convolution

In this exercise, no programming is required. The goal is to perform a filtering by
computing the convolution of an input image and the filter’s kernel.

Convolution

We will use the convolution operator on a small portion of the original image
“BOATS”. On the figure below, this portion is delimited by a red rectangle that contains a part
of the fishing boat’s boom.

Na

j
e
fi
-
=
r
i

g
i
¢
—X

The following array Iy contains the luminance value of the pixels which are in the (20x11)
delimited zone. In two diagonal bands, we can easily distinguish the pixels which belong to
the fishing boom and to the rope.

Cloudy sky Fishing boom

1956 136 133 203 200 133 135 201 204 133 200 ff
195 212 133 206 133 202 204 201 204 137 213 4
129 137 206 133 209 131 213 203 208 134 lﬁﬁ
195 213 202 133 134 210 135 135 208 163 Léﬂ
154 194 137 206 207 223 202 131 149 125 flﬂl
207 135 206 217 205 135 174 151 108 70 ﬁ 74
205 133 137 133 130 16l 133 94 g0 a2 210
179 136 205 136 155 113 75 a6 139 223 209
204 136 135 115 a1 7 Gl 1339 202 203 133
208 1539 105 25 G a0 222 214 206 133 131
146 100 g7 55 151 210 210 200 122 207 201

g4 a9 ad 207 212 212 134 211 195 136 147

Gl 103 219 134 133 137 133 204 121 214 203
174 213 209 135 203 130 205 132 201 201 132
200 215 201 137 204 135 203 132 210 133 1435
207 134 132 154 133 137 133 205 la4d lal 203
176 131 200 135 131 137 207 130 176 217 133
127 130 201 200 203 135 154 171 125 133 132
123 1339 205 133 2la 141 132 203 124 133 1356
1256 217 207 13a 1l4a 20}! 211 133 203 133 130

Fishing rope

The goal is to perform two kinds of filtering on some elements of this 2D array.

1 — Low-pass filtering

Let us consider a (3x3) low-pass filter. Its convolution kernel is:

1 2 1
L1 2 4 2
61 1 2

After having performed this filter on the (20x11) area, we observe the following partial result:

111 149 149 150 149 146 148 150 150 142 113
149 19 18§ 199 198 19§ 201 203 201 197 149
149 200 199 198 193 199 202 204 200 188 135
145 200 M 198 201 203 200 196 185 161 105
146 197 199 203 206 205 194 175 151 12l 75
149 197 199 203 201 M les 142 11z 96 75
148 197 196 193 18l 157 122 1o 1oz N 113
145 195 189 170 146 117 95 M 140 175 146
146 185 163 131 105 96 115 155 187 200 149
134 154 121 95 [126 1e2 187 202 200 147
99 111 95 109 143 178 201 204 200 196 143
65 @M 117 155 189 200 201 200 199 193 138
76 130 169 193 199 196 195 QM 199 198 145
123 185 200 199 196 195 196 197 200 198 143
150 204 200 194 196 197 197 196 194 187 134
14 197 194 | 104 196 195 121 [182 141
14z 192 195 195 195 194 183 183 184 193 149
14z 193 187 20l 187 186 178 1§z 191 198 148
146 197 200 198 lso M 184 191 195 195 144
11z 153 151 141 133 139 147 148 147 144 105

Fill in the gray fields to have the full output array Is (to round to the nearest integers less than
or equal to the elements.).

2 — Contrast enhancement filtering

We wish to enhance the contrast of object edges in the delimited area. We use thus an
“enhancement” filter which has the following convolution kernel:

0 -1 0
-1 5 -l
0 -1 0

After having performed this filter, we observe the following partial result:

586 373 408 410 410 343 382 405 417 399 589
@3 291 117 252 178 238 209 188 220 126 492
41z 100 265 121 2383 71 277 223 226 226 395
389 309 2ol zoo g 257 185 183 325 leo 210
3zl 16 127 221 207 301 237 208 123 162 78
451 170 244 275 216 21z 189 198 a0 R a
441 207 133 185 236 168 161 40 -3 -273 705
zon zoz 271 26z 189 127 A -157 R 97 424
437 236 304 18 40 25 -263 403 268 228 332
531 156 MR 1z B -127 s3s 253 223 183 367
ekt 30 HE -ze5 zio0 387 224 173 152 247 460
145 -11 -z26z 510 =292 257 149 z6z [217 130
56 [520 151 194 147 B s 141 zZ74 487
39z 384 21z 182 228 160 252 158 21l 200 403
a04 zez zoz 151 [181 235 150 235 270 142
465 165 1al 148 z14 207 128 300 I HE 53
285 195 221 200 157 195 316 141 121 352 373
aze 17z zwo 193 z3s 275 [lzo =251 184 388
g3 140 230 183 337 -105 251 270 167 219 409
570 493 427 379 121 537 468 323 445 358 516

Again, fill in the gray fields to have the full output array.

3 — Border distortions

When computing an output pixel at the boundary of an image, a portion of the convolution
kernel is usually off the edge of the image. Propose some examples of boundary conditions to
fill in these “off-the-edge” image pixels.

1 — Here is the 2D output array after low-pass filt

binomial filter:

Sol ution to the exerci se on convol uti on

n=1
|
111 149 143 150
149 199 198 199
149 200 193 195
145 zdo 195
146 197 199 203
143 197 199 203
148 197 196 193
145 195 1a3 170
146 185 163 131
134 134 121 ag
9g 11 95 109
—68--f 93] 117 153
78 130 169 193
1z3 185 200 199
150 204 200 194
145 197 194
l4z 192 195 195
14z 193 197 201
146 197 200 198
11z 153 151 141

142
133
133
201
208
201
151
148
105
143
132
199
198
138
194
13g
137
132
133

Here are all the steps to compute the output value

| (11,1)=

Thus: |

T
16 =1 j="1
16

= L
16

ha, §) . 1g1L -1)

* h(0, -1).0 11,2) +h(0,0).I

146
135
133
203
205
1589
157
117

96
1za
175
Z00
196
125
127
196
134
13

133

145
201
Z0z
Z00
194
1eg
129

95
115
1a2
201
201
196
196
197
196
139
179
154
147

d1L,1) +h(0,1).

ering with the (3

150 150
203 201
204 200
196 185
175 151
14z 11z
108 10z
| 1oz] 140
155 1&7
197 202
204 200
200 199
198 199
197 200
196 194
121|154
183 184
1z 191
191 195
145 147
of the pixel |

411,0)

+ h(@1, -1 12-12) +h(1,0)1 12 -1,1) +h(L,1).1 (12 —1,0)}

- 1

+ 2x100 + 1x146]
=1500/16 = 93.75

s(11,1) = E[93.75] =93

[1x219 + 2x108 + 1x60 + 2x64 + 4x69 + 2x84 + 1x87

113
149
135
105

75

75
113
146
149
147
143
138
145
143
134
141
149
145
144
105

s(11, 1):

=1 +211 hi, -1). 1g11-i,1 {-1)) +h(i,0) .1¢11-i1 —0)+h(i1) .Ig11-i,1 -1)
i =

. [h(-1, -1)0 §1141,2) +h(-1,0).1 1141,1) +h(-1,1).1 {11 +1,0)

x3)

Displayed here are the images before (on the left) and after (on the right)
filtering:

Image after filtering

Image before filtering

smoothed
edges
smoother
20k
Here, the smoothing effects (caused by removing the high spatial

frequencies) of the low-pass filter are strongly vi sible.

2 — Here is the array after performing the 3

n= 1

586 378
383 201
41z 100
389 308
321 185
451 170
aal 207
290 202
437 23%
531 188
338 39
_ 145 -1
m= L____,ﬁﬁ___
392 384
404 262
465 165
285 195
426 172
383 140
570 493

408
117
265
201
127
244
133
271
304

-1

111

-262
520
2l2
202
181
221
210
230
427

410
252
121
200
221
275
1385
262
18
132
-265
510
151
132
151
148
200
198
133
379

410
178
283

207
216
236
189

40
=87
210
292
194
228

214
157
238
387
121

343
238
TL
257
301
212
165
127
25
=127
387
257
147
160
181
207
195
275
-105
537

Here are all the steps to compute the output value

for example:
+

+1 1 o . .
Is(12,1)= i:Z_1 j:z—l h(i, J) . 1121)

* h(O, -1)1 12,2) +h(0,0).I

x3 enhancement filter:

382
209
277
155
237
189
161

-263
536
224
149
150
252
235
128
316

251
468

405
l8a
223
1683
208
198
40
-167
403
253
173
262
238
158
150
301
141
120
270
323

d12,1) +h(0,1).

417 399 589
220 126 492
226 226 395
325 160 210
123 162 78

90 [-19] 9

-3 -273 708
497 424
Z68 228 332
223 183 367
152 247 460
185 217 130

I 274 487
211 200 403
295 270 142
121 352 373
251 184 368
167 219 409
445 358 516

of the pixel | (12, 1)

i:rzfl hi, -1). 1¢12 -i,1 «-1)) +h(i,0) . 1412 -i,1 -0)+h(i,1) . 1412 -i1 -1)

[h(—l, -1). ¢12+1,2) +h(-1,0).1 12+1,1) +h(-1,1).1 {12 +1,0)

412,0)

+ h(@1, -1 12-12) +h(1,0)1 12 -1,1) +h(1,1).1 {12 —1,0)}

0x209 + (-1)x218 + 0x174 + (-1)x219 + 5x108 +

+ (-1)x69 + 0x84
=-26

Note: here, the output luminance values can be nega

To display the image result, it is thus necessary t

to the full range [0, 255].

(-1)x60 + 0x64

tive or higher than 255.
o scale the gray levels

Here is the display of the arrays before (on the le ft) and after (on the
right) filtering:

The enhancement filter which is performed is indeed the sum of an Identity
filter and a Laplacian filter (useful for edge dete ction):
Identity Laplacian Enhanc ement
000 0-10 0-10
010 |+ -14-1|=|-15-1
000 0-10 0-10
This filter enhances the contrast of the objects (| ike the fishing boom and

rope) in the original image.

3 — A lot of methods are defined to compensate the
zero-padding, border replication, etc.

For more information about these boundary condition
correction of the exercise: “Filtering” (chapter3).

Here, we will only show some results for the low-pa
methods used to remove these border distortions.

e Zero-padding

That is the simplest method: the "off-the-edge" nei
Zero-padding can result in a dark band around the e

Zero-padding

border distortions:
s, refer to the

ss filtering with two

ghborhood is set to 0.
dge of the image:

* Replication :

The "off-the-edge" neighborhood is set to the value
pixel in the original image (to filter using border

optional argument ‘ replicate’ to the Matlab function

replication eliminates the zero-padding artifacts a
image.

Duplication

of the nearest border
replication, pass the
infilter). The border

round the edge of the

Chapter 3

Fundamental of Image Processing

Linear Filtering

Examples of typical filter kernels

Support size (3 x 3) : the most common and the simplest

11 1 | 1 2 1 1 -3 1
O h=1|1 11 h=—|2 4 2 h=|=3 9 -3
9 16 131
1 11 1 21
Average Binomial Contrast enhancement
-1 0 1 -1 -1 0 0O 1 0
® h= |2 02 h=|-1 0 1 h=|1 -4 1
-1 0 1 0 1 1 0O 1 0
Horizontal Sobel Oblique gradient Laplacian

filters @ : H (0,0)=2 2 h(i,j) =1
]

Filters ® : H (0,0) = lZ JZh(i, =1

The observation of the convolution kernel h gives some important characteristics about the kind

and the effects of the filter used:

if all the elements are positive: h is low pass-filter. It performs a weighted average. For a
8-bit pixel coding, when the result is more than 255, it is set to 255 by thresholding. This

kind of filtering will smooth the image, it is useful to reduce noise in images;

if some elements are positive and some others are negative: a partial or complete
differentiation is performed. The convolution kernel corresponds partially or completely
to the behavior of a high-pass filter. A high-pass filter can be applied to sharpen the

image, therefore preserving boundary detail.

Some examples of typical filter kernels are presented here:

low-pass filters: a mean (‘average’) filter and a binomial filter that smooth the image.
Compared to the simple averaging image, edge enhancement with the binomial filter is

notably smoother;

high-pass filters: a contrast enhancement filter, oriented derivative filters (horizontal

Sobel, oblique gradient) and a non-oriented derivative filter (Laplacian).

Example:

For example, a “binomial” low-pass filter (3 x 3) and an “oblique gradient” high-
pass filter are applied to the image LENA:

After using the binomial low-pass filter, the edges and the textures are smoothed. One visualizes
these effects on the shadows of the shoulder and the face.

7

4

After using the gradient oblique high-pass filter, the diagonal edges of the image are enhanced.

Filtering objectives

* Noise reduction
* Low-pass filtering before sub-sampling
* Contrast enhancement

Common filters:
“Low-pass” (with unitary DC gain)
. I 11 . I 1 1 | 1 2 1
H=—[11 1 Hy=—|1 2 1 Hy=—|2 4 2
9 10 16
I 11 I 11 I 2 1
Very low Low Medium
(spatial averaging)

“High-pass” (with unitary DC gain)

0 -1 0 -1 -1 -1 =21
H,=-1 5 -1 H,=[-1 9 -1 Hy=1-2 5 -2
0 -1 0 -1 -1 -1 =21

The spatial filtering can be divided into 2 fundamental categories:

- Low-pass filtering that reduces luminance variations. Therefore it smooths
the image content and it reduces abrupt changes in intensity. The low-pass filter is
typically used to reduce noise effects and to remove the spatial high frequency
content of the image (details of the image) before sub-sampling (to remove
aliasing effects or parasite frequencies cf. chapter 1) ;

- High-pass filtering that enhances abrupt luminance variations which
characterize typically the object edges and the details in an image. For
example, a high-pass filter with unitary DC gain can enhance the contrast of the
original image.

The presented convolution kernels are only some examples of typical filters. The user can
choose or define specific filters that he/she needs to perform image processing.

The Fourier transform of the impulse response of a linear 2D filter gives the frequency
response of the filter. The bottom figure presents the frequency response of the binomial filter
H; (image on the left):

Magnitude :

vy

T
Vx

d
-)
Magnitude-

The two-dimensional spectrum of an image or a filter represents the magnitude of the Fourier
transform according to spatial horizontal frequencies “vx’ and vertical frequencies “vy”.
Usually the Fourier spectrum of an image is displayed on a plane (representation by a top view
of the magnitude: image on the right).

We can observe on the Fourier spectrum that the binomial filter has the behavior of a low-pass
filter for the horizontal and vertical frequencies. The variations of luminance along the

horizontal and vertical spatial axes are thus reduced: the image is “smoothed”.
Here is the Fourier spectrum of the « oblique gradient » low-pass filter which was used on a
part of the image LENA:

VX

The filter lets only diagonal high frequencies pass. The variations of luminance along the
diagonal directions are enhanced on the filtered image. The diagonal edges and details are
highlighted.

The concepts related to the 2D Fourier transform of an image or a filter and to spatial
frequencies are more fully developed in the exercise "FFT" of this same chapter.

Examples of low-pass filters

* Three examples of convolution kernels for image low-
pass filtering.

* Unitary DC gain.
0 0 0
ol vi | v 19| 19 | 1/9 o |1/8] 0
v, | v ol19]19]1/9 ol 1/8 12 1/8
19 | 1/9 | 1/9 0 |1/8] 0
Filter 1 Filter 2 Filter 3

Let us perform three different low-pass filters on the grayscale image Lena. These filters have
all a unitary DC gain. For each of them, the kernel origin h(0,0) is indicated by the horizontal
and vertical marks “0”.

Note: the filters 1 and 2 are respectively 2x2 and 3%3 average filters. After image filtering, the
output luminance value of each pixel is the mean value of all the neighboring luminance
values (size 2x2 for the filter 1 and 33 for the filter 2): the image is thus “smoothed”.

Original image Lena

Filters (1)

At the top is the original image. At the bottom, from the left to the right, the images which are
respectively filtered by low-pass filters 1, 2 and 3. One can distinguish some smoothing effects
on the shadows from the face of Lena, however these effects are hardly visible to the naked
eye. The human eye is in fact less sensitive to the spatial high frequencies and it does not
distinguish that removing the high frequencies has involved loss of details from the original
image. The low-pass filtering thus involves only few losses in visual quality and it allows you
to sub-sample without aliasing effects.

Separable 2D filters: convolution of two “1D filters”
[hyp] = [0 p,™] O [1y ;@]
[(m,n) = h(m,n) U I (m,n): 2D linear filtering

I (m,n) = h,(m) O [hy(n) O I (m,n)] : convolution of two 1D filters

[(m,n) = hy,(m) O I’(m,n) = hy(n) O I"’(m,n) : commutative operator

With:
I’(m,n) = hy(n) O I (m,n) row by row 1D filtering
[”’(m,n) = h(m,n) 0 I (m,n) column by column 1D filtering

* Constraint : columns and rows of h, , must have proportional elements.

Example 1 Example 2
= ace bo oo a a’ ab a?
[abc]l @ |B|=|ap bR cp [aba] @ |b|=]|ab b* ab
vl Lay by oy a] [a® ab a’

A 2D filter is “separable” if the kernel [hyp] can be decomposed into two 1D kernels (which
are applied successively). The filtering is performed in one dimension (rows), followed by
filtering in another dimension (columns): [hyp] = hip™] O [hip™], where the symbol []
stands for convolution operator.

The rows and the columns in the original image are thus separately filtered. Whatever the first
1D filtering performed, the output image Is(m, n) is still the same. To be separable, a 2D filter
must have proportional elements on the rows and the columns: mathematically that is seldom
true, however several usual 2D filters are separable.

Examples of separable filters
* Averaging 1 111
l[111]511:1111
3 3 9
1 I 1 1
« Contrast enhancement -1 I =31
[<1 3 -] O |3| =1[-3 9 -3
-1 I -3 1]
* Binomial _ _
1 1 : 1 2!
-1 2 1 2] = =12 4 2
4[] . 4 16
L1 2 1]
* Horizontal Sobel (1 1 0 1
[-1 0 1] O (2] = |2 0 2
. . |1 -1 0 1
* Advantage: low complexity
2D Filter: M x N multiplications and additions per pixel (MAP)
2D separable Filter: M + N multiplications and accumulations per pixel

Here are some examples of separable 2D filters with the decomposition into 1D filters. The
complexity is low for 2D separable filters because the number of operations (multiplications
and additions) is reduced, thus the computation time is faster.

Typically if the kernel size is MxN, we need only (M+N) multiplications and (M+N-2)
additions instead of M.N multiplications and M.N-1 additions for a non-separable 2D filter.
Often the term “MAP” is preferred (multiplications and accumulations per pixel): there are
(M+N) MAP for a separable filter instead of M.N MAP for a non-separable filter.

Exercise Chapter 3 — Fast Fourier Transform (FFT)

In this exercise, vou will visualize the (spatial) frequency response for some examples of
images.

Before starting, load and unzip the file “fff.zip” which contains the scripts you will need
throughout this exercise.

Discrete Fourier Transform

1 — Add your own working folder paths to the path list in the path browser then open and
analyze the script ffi2d sinus.m. Use the Matlab help (command helpwin) to understand how
the Matlab functions that we are using work. What is the kind of the 2D input signal?

2 — Modify the spatial period value (called period in the script): enter the values 4, 8, and 16
(orientation 0). For all these period values, note the magnitude and the normalized frequencies
of the lines down. Change also the amplitude and the DC offset (dc) of the 2D signal.
Interpret the results. Next, test the period value 17 and interpret again.

3 — Use the script ffi2d resolution.m to compute a higher frequency resolution FFT. Change
now the 2D signal orientation: test pi/2 then p1/4 (period = 16 and period = 16*sqrt(2)).

4 — Run the scripts ffi2d square.m and fft2d checkerboard. m. Change the parameters and
interpret the results. By using the script fft2d sinus.m, write a script that displays a natural
image and its frequency response. Run this script on several images.

http://webdav-noauth.unit-c.fr/files/perso/ythomas/cours_unit/fichiers_matlab/fft.zip

solution to the exercize on FRT

1 - The script £ft2d sinus.m allows you to wisualize the discrete Fourder
transfcrm of a 2D =s=inuacidal signal.

Firat, we define the characteristics of the 2D signal: image size, =patial
pericd, orientation, ampl itude, and DC offaet. Then the functicon
generation sinus geherates a 2D =2ignal from these characteristics (the
functicn generation sinus has been written for you).

Sizel = 128 % image 2ize

pericd = 16 % apatial period

crientation = 0

amplitude = 1282

de = 0 % DC offsat

iml= gensration simusizizel, pericd,crientaticon, ampelitude, do) ;

The image of the simiscid iz then wisualizged in twe manhera: in a view from
the top (2D visioh with the function Iimagess) and in perspective wiew (3D
wizion with the function surr) -

120
| 1 g}]
]
a {5 1
0
s ! A0
50|
2 150
a0
An
124
G = n 5 = 19 1=

Wle note that the horizontal direction of the sinuzscid invwelves the
generaticon of wertical bands on the image (left). Once the sinuscid image
iz computed and stored in iml, we compute itz fast Fourier transform (FFPT)
with the Matlalk function r£res.

]

T

&

spectruml = £Et2iiml)/isizel*=sizel];

Then we uze the function £rtshirt to shift the Fero-frequency oomponent (0,
n) of the fast Fourier tranaform to the center of the apectrum.

spectruml = £ftshift{spectruml) ;
The normalized wectors represent the hopizontal and wertical spatial
frequencies. Here these wectorsz have the zame length and the zame

commponents, giving:

b =(- =izel/2:1:{ =2izel/2-11)/ =izel;

The absclute wvaluse (moduluz) of the gpectrum can be displayed with the
command :

imagesc (vt ,vt, (abs(gpectruml)) ;

Here is the image of the spectrum modulus:

A3

horizontal
orientation

We =zee tLwo white points. We will =zhow later that these points are not two
delta functione but they are the two main lobes of a =inus cardinal
function because the 2D sinuscidal functicn is bandlimited:

Magnitucle

Vil 1ry LYY Yy
Vs 0

Note that the oriesntation iz horizontal along these two points (it iz
orthogonal to the wvertical orientaticonzg of the bands 1in the original
zinusoid images) .

Note:

The zpatial pericd is the minimal numbser of pixsels betwsen two identical
patternsg in a “pericdic” image. The minimal szpatial pericd in an image iz

thus two pixels:

‘ |
‘- L
minimal period: 2 pixels

The maximal normalized zgpatial fregquency Vu.p 12 thus equal to:

v = 1 < =1
max minimal period 2

We can plot the image frequency response along the normalized spatial
frequencies which belong to the range [-0.5, 0.5].

Let T be the period. The corresponding normalized frequency Vu.., is defined
by: Vnorm = 1/T‘

2 -

= Changing the period:

By decreasing the spatial period of the sinusoid (value = 4), we visualize
the image below:

L5

On the image, we observe one line per four pixels.
The magnitude image ig displayed below:

-0.5

-0.4

03 S T

-0.2

-0.1

0

01

02

03

04

-05 -04 -03 -02 -0.1 0] 0.1 0.2 03 0.4

The two white points are located at the gpatial frequency coordinates:
{V1X= -0.25, Viy= O} et {Vgxz 0.25, Vyy= O}

When the orientation of the 2D sinusoid is zero, we can represent one line
of thig 2D gignal by a 1D ginusoid sgignal which propagates along the
horizontal axis (Ox).

The absolute value of the horizontal spatial frequency Vviy 1s equal to the
one of V,x. In fact: Vix = -Vyy thus |Vix| = |-Vix|. This absolute value is the
inverse of the gpatial period: Vviy= -1/T and v,x= 1/T.

" Changing the amplitude

The sinusoid values belong to the range [-A, A]l, where A stands for the
amplitude. The change of the amplitude A influences the magnitude values of
the two white points that we had previously noticed on the spectrum image.
) = 10 S(=A.sin(2.pifox)
10 T T T

LS

» Changing the DC offset:

By increasing the DC offset Vy, we visualize the images below:

The spectrum modulus has now a new freguency component at the center (image
on the right) adding to the two preceding frequency components. This
component corresponds to the spectrum DC gain located at the spatial
frequency coordinates {vy = 0, vy = 0}. This DC gain is equal to the DC
offset of the sinusoid.

" Period T = 17:

We compute the fast Fourier transform with the spatial period 17:
-0.5 180 ... R S—

160 | (N

140 | .) S —

120

100

80

60

40

20

s o 0.5

On the Fourier plane (left), the two white points are “spread out”. On the
right image, note that the frequency response is not composgsed of only two
impulses any more. The frequency response looks like the envelope of a
sinus cardinal function.

Let us consider a 1D sinusoidal signal to explain this result. This signal
is called f(x) and defined by:
f(x)=Vy.sin(2.w.£,.x)

The gpectrum F(vy) of this sinusoidal signal is thus defined by:

F (Vx) =Vu .(#. S (VX_VX0)+%‘ e} (VX +on)j
J

where “j” stands for the complex number such as j2= -1, and vy = 1/T.

The spectrum modulus |F(v¢)| is plotted on the figure below:

[F(vo)l 4

-Vxo

This gpectrum is computed for a 1D ginusoidal signal of infinite support (x
ranging from -e to +o).
In practice we cannot represent an image on an infinite support, therefore
the 1D sinusoidal gignal is multiplied by a rectangular pulse p(x). This
rectangular pulse is defined by:
_ |1 if xel[-n/2;L/2]
plx) = { 0 else

Here 1s the graph of the function pi(x):

P (xX)a

\ 7

-L2 0 L/2

The gpectrum P(vy) of this rectangular pulse function is defined by:

P(vz)=L.sinc (L.m.vyx)

Where “ginc” stands for ginus cardinal: sinc(x) = sin(x) /x.
In the szcript fft2d sinus.m, the zize of the input 1image 1s 128 x 128

pixels. The sinusoldal sgignal propagates along the axe (0x), thereforse L =
128.

The gpectrum modulus |P(vg) | ig displayed on the figure below:

[P (vl

N

L

Note that the length of the lobes is 1/L (except for the main lobe whose
length is 2x1/L) .

The viguzlized sginugold fy(x) 12 tChus the function defined by:
E-(x) = £(x).p(x)

Itg spectrum Fy(vy) 18 given by the relation:

Fu(vy) = F(vy) ®@P(vy) = %.vm.[%.P(vx—vmwj.P(vxwm))

]

Let us consider the T-periodic sinuscidal signal fy(x) has an amplitude Vu,
and 18 band-limited on a support whose length is L. Here, its frequency
response 1g plotted:

[Tyl

L2

Y Mo

| ! I
| ~
‘-"'l“| || kl A & I‘”II‘l \l ‘l ‘.I.‘ ‘II

At 1A At 1A
TN Al H‘ REARY
AT 0 1T

Moreover, to represent the spectrum of this sinuscold, a fast Fourier
transform is computed. The sgpectrum is thus computed for a finite number of
its points. By default, with the Matlab function ££ft2, this number of
points is equal to the number of pixels in each direction (horizontal and
vertical) .

Here the numbsr of pixels 12 the zame one according to two directions.
After FFT computation the spectrum modulus |Fy.| 1= thus represented by 128
points of the spectrum modulus |Fy| according to the horizontal spatial
frequencies. The horizontal frequency resolution Avy is then defined by: Avy
= T4 28

Note that 1/L = Avy: on the spectrum of the sinusoidal signal; the length of
any lobe (except the main lobe) 1s equal to the horizontal frequency
resolution.

If the period T of the 1D =inusoidal =ignal i1is 1inverszely proporticnal to

the horizontal fregquency resolution (i.e. 1/T = k.Avy, where “k” 1g a non-
null natural integer), the spectrum modulus |Fys| represents only the two
main lobes of the spectrum modulus |Fv| (the other lobesg are set to 0):
i
[Fy(vy) !

TEE
Avy “

fiequencies where is
computed the FFT

Then for the periods:

s T - g, logox L
4 128

= T =g, logexd |
8 128

W e R ngxLx
16 128

The condition 1/T = K.Avy is thus true for these three pericds. We visualize
only the twoe maximal wvalues of the main lckes. The other components are
zeroing therefore the spectrum modulus locks like two delta functicons (cf.
i

When the periocd is set teo 17, the conditioen 1/T = k.Avy 1= net trus. We
visualize thus some =samples of the other lokes:

|Fs(v)l 4

visualized points Bl

I T =
| i

ﬁ\',}{ 1417

If yvou want to wvisualize the other lobes whatever the pericod 1is, vou must

increase the gpatial frequency rescluticon toe satisfy the condition: Avy <
T /il

3 - The gcript fft2d-resolution.m allows Vvou to 1ncrease the fragquehcy
rescolution. We choose along one directicon (the horizontal one then the
vertical one, o©or conversely) the mumber of pixels N; to compute the FFT.
This number must ke =upericr to the number MN; of peoints in the original
image along the =ame directicn (horizontal or vertical). The wvalus of the
padded points is zZero.

Let us ceonsider a simple (2X2) grayscale image:

We want to increase the frequency resolution to compute the fast Fourier

transform with 4 points along each direction instead of the two original
points.

The fast Fourier transform is thus computed on the following image
(N2:4) :

The four original pixels are marked by a red star.
(zero padding) have been added to create a

When vyou want to compute the FFT in Matlab with a higher frequency

resolution, you can pass the optional argument N, to the Matlab function
fft2: fftZ(iml,N2,N2).

Here are the results obtained with a 2D 8-periodic
sinusoid:

The other black pixels
(4X4) image.

0.5

120

40

20

By increasing the frequency resolution,

all the spectrum lobes are sampled
even if the period is like 1/T = k.Avg.

Let us consider for example a X2 frequency resolution: Avy= 2.Avy

| Fy (vl

All the lobes are now represented by a non-zero value {(maximal value here).

Changing the orientation:

Here are the results obtained after having get the orientation to ®/2
(period = 16 pixels):

a

““““““““‘\ |

ié
Ly s R R WE W R T

Lz expected:

- The propagation 1g perpendicular to the original one (the bands are
now horizontal in the image on the left);

- On the right, the two points of the gpsectrum define a direction which
ig perpendicular to the direction 1in the original sgpsectrum
(orientation = 0) and to the bands of tChe assoclated left image.

s

3

2]

)

o
.
2
]
7]

In the same way, by setting the orientation to ®w/4 (periocd T = 16 pixels),

the propagation orientation of the sinusoid 1is rotated by -w/4. We
visuallze horizontal and vertical periodlc patterns. These ones also create
a diagonal periodic pattern whose period 1z equal to 16 pixels. The

horizontal and vertical periods are thusg equal to :%= plxels:
2

period T= 16

cn the image belew, the spectrum medulus is represented by twoe white points

which are lecated at the ceordinates: __X&;Vn and jﬁl}—j&L ., where Vn:j;.
V2 42 V2 a2 T

These two polints define a direction which is perpendicular te the bands in
the associated criginal image. The 2D image of the frequency response gives
several pleces of information about the z2patial orientation of the coriginal
gignal.

4 - By launching the gcript f£f2d square.m, you visualize the feollowing

image -
L i = 4 = B

The 2D signal is a square signal which propagates aloeng the horizental axis
(OX). We can thus represzent one line of this 2D signal by a 1D =dquare
signal which propagates aleng the herizental axis (0xX):

c(®)

| ——

v

Here i1z the frequency response of the 2D band-limited square signal. As
expacted the represzentaticn of the spectrum modulus iz given by the product
of two sinus cardinal functicna:

By launching the script £r2d checkerboard.m, we obtain the following
reaulta (pericd = 16):

Py

We perform the XOR-operator between twoe orthogonal sgquare waves to oreate
the agquare checkerboard (vou card alsc use the Matlab function checkerboard)
When vou wizsualize the freguency reaponse o<f this image, wou can notice
crosaed magnitudes which are similar to the one obtained with a =ingle
BguUare wWave.

In additicn, note that the chedkerboard patternzs (on the left) are pericdic
alocng the diagonal directichs of the image.

The frequency response of the checkerboard image is displayved on the image

below (pericod = 1&8) . Here we plot the spectrum modulus of the two basic
square signals: the horizontal cone and the wvertical one (warning: they do
not appear when wyou display the frequency zresponse). The spectrum

components of the checkerboard image are egqual to the crossed components of
the two frequency responses which are associated with the two basic square
signals.

L ST R

05 -04 03 -02 -01 0 0.1 0.2 03 0.4

5 - Here is an examnple of a script for displaving the frequency response of
the image CLOWN LUMIT:

iml=imread'CLOWN LUMT.EME') ;

% colormap for displaying in gray levels
fiqureil) ;

imagesc (iml) ;

map = 0:1/28K:1;

map = [map' map',map'];

colormap (map) ;

% FET

[igel, sigei]l=size(iml{:,:,1))

nk pointl = Z2#*sizel;

nb pointi = Z#*sizel;

spectruml = fftZ{iml,nk pointl,nk point2) /(sizel*sizel);

spectruml = fftshift (spectruml) ;

% To reduce the DC component

spectruml = Z*spectruml;

spectrunl (sizel /2+1,281ze2/2+1) =spectruml (sizel/2+1,5ic=2l/2+1) /2;
% normalized frequency wvecbors

vtl=(-sizel/2:s5izel/nb pointl:(sizel/i-sizel/nb pointl))/fsizel;
vEi=(-zizel/2:sizel/nb pointi: (sizel/2-sizel/nk pointl))/sizel;

% To display the spectrum modulus

figure (2) ;

imagesc (vtl,vt2, (abs(spectruml))) ;
% 3-D representation

figure (3)

[X,Y]=meshgrid(vtl,vt2);
mesh(X,Y,abs (spectruml)) ;

Here is the result:

TR T TR I I T T

In natural images the DC component is very often higher than the other
frequency components (middle and high frequency components). We prefer
generally to display the natural logarithm of the spectrum modulus instead
of the spectrum modulus itself. Here are the commands to type to display
the natural logarithm of the “Clown Ilumi.bmp” image spectrum modulus:

% We display the spectrum modulus

figure (2);
imagesc(vtl,vt2, (1logl0 (abs(spectruml)))) ;
colormap{(map) ;

Here is the result:

Exercise Chapter 3 — Linear filtering

In this exercise, you will use Matlab to perform a linear filtering with various techniques.
Before starting, load and unzip the file linegrFilter.zip” which contains scripts you will need
throughout this exercise.

Linear Filtering in frequency domain then in spatial domains

1 — Open the script lowpass.m. Use the F9 key to launch the first part of the script (that
computes the transfer function of the filter). Modify the support size and run the script again
with F9. Explain the results.

2 — In the second part of the script, we process an image with a spatial filtering. This filtering
is performed by using the Matlab function conv2 (2D convolution) with two different optional
parameters. Compare the results and conclude (you can change the support size then you must
run the first part again).

3 — In the third part of the script, we use the Matlab function imfilter with two different
optional parameters. Compare the pixels on the right edge of the image and conclude. Use
now the last part of the script to perform the frequency filtering instead of the spatial filtering.
Observe the results.

4 — Run the script filtering spatialvsfreq.m. You will compare the computation time of the
spatial filtering with the frequency filtering. Run the script again after having modified the

support sizes and conclude.

5 — Analyze then run the script highpass.m. Interpret the results.

http://webdav-noauth.unit-c.fr/files/perso/ythomas/cours_unit/fichiers_matlab/filtreLineaire.zip

Solution to the exercise on linear filtering

Linear filtering in the frequency domain and in the spatial domain

1 — The first part of the script | owpass. mallows you to define a low-pass
filter kernel. Here, the convolution kernel defines an average filtering.
Each pixel value is the mean value of the neighbori ng luminance values:
111
%. 111
111
The magnitude of the frequency response is displaye d:

-0.5

As expected the high frequency components have been removed. However the
magnitude is still too significant for horizontal a nd vertical high
frequencies. This low-pass filter is not strongly s elective.

By increasing the size of the filter support (suppo rt=7), we display the

following transfer function:

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

By increasing the support size, we visualize that t he filter passband is
reduced: the filter is more selective. The magnitud e is less significant

for the middle and high frequencies. In fact the la rger the size of the
filter support is, the larger the neighborhood is, therefore pixel values

are the mean values of large neighborhoods: these p ixel values are thus
close to each other (smoothing effect). The | uni nance vari ati ons according

to (Ox) or (Oy) ar e thus | ow, that corresponds to | ow spatial frequencies.

2 — By running the second part of the script | owpass. m we visualize the
following images:

100 200 300 400 500

This images are computed with a 7 x7 filter. The filtering is applied by

computing the convolution “filter L] image” with the Matlab function conv2. A
smoothing effect appears on the two output images. However, in the Matlab
Workspace, you can note that the size of the image imf2 (on the right) is

smaller than the size of the image imf (on the left). In fact these two
output images are computed with the same function conv2 but the input

optional parameters of this function are different:

imf = conv2(im1,filtre); % (can be written imf=conv2(im1,filtre,'full’);)
imf2 = conv2(im1,filtre, 'same');
Let us consider an input image whose size is M 1 X N 1, and a filter whose

sizeisM >, xN ,:

- The output image imf is created by computing the tw o-dimensional
convolution of two 2D signals. Its size is thus (M 1+tM-1) x (N +Np-1).

- The output image imf2 is created by computing the s ame two-
dimensional convolution but only the central part o f the result is
preserved. The output image size will be thus the s ame as the input
image size.

Note that there is a third optional parameter (‘valid®) of the function
conv2. The output image is only those parts of the convo lution that are
computed without the zero-padded edges. The output image size is thus (M 1-

M+1) x (N 1-N,+1).

3 — By running the third part of the script
following images (7 x7 filter support):

100 100

200 200
300 300+

400 400 |

500k
100 200 300 400 500

These two images are computed with the Matlab funct

imf3 = imfilter(im1,filtre);
imf4 = imfilter(im1,filtre, 'replicate’);

Note that the right side is darker on the left imag

pixels at the boundary of an image, a portion of th

usually off the edge of the image. To compute the c
necessary to define boundary conditions to fill in
image pixels. Matlab allows you to use some usual b

| owpass. m we display the

ion infilter:

e. When you compute the
e convolution kernel is
onvolution, it is
these “off-the-edge”
oundary conditions:

zero-padding (method by default), replication ('replicate’), symmetry
('symmetric'), etc.
Examples of boundary conditions
Let us consider the following M x N grayscale image I:
wl xl |2 |al |2 |&!
25 5 [too| 5 | 10 {209
o7 | 1251 40 [87 | 248 [, 28
L5442 1 25 |111] 2 |,l
LO [45 (114 5 | 194,68
D8 |8 47 220 .4 |48
We want to apply the 3 x3 average filter “h”. The pixels marked red have no

neighborhood off the edge.

e Zero-padding

Let us consider that the "off-the-edge" neighborhoo d is set to 0. The
convolution can thus be performed on the pixels mar ked red.

= | == | =] =] =

That is the default method used by Matlab.
e Duplication :
Let us consider that the boundary pixels are replic ated to create an off—

the-edge neighborhood. The "off-the-edge" pixels ar e set to the value of
the nearest border pixel in the original image.

Note: in the special case of the 3 x3 filters, the replication method is
equivalent to the symmetry method.

The last part of the script hi ghpass. mallows you to display the frequency
response of the image MANDRI LL_LUM . BVP before and after filtering:

-0.4 -0.2 0 0.2 04 -04 -02 0 02 04

The image on the left shows the frequency response of the image
MANDRI LL_LUM . BMP before filtering. There is a white zone on the ima ge
center which corresponds to the image’s DC (i.e. co ntinuous) component.

The group of points around this DC component corres ponds to some middle and

high frequency components of the image (contours, d etails, transitions,

etc.).

The image on the right shows the frequency response of the image
MANDRI LL_LUM . BMP after low-pass filtering.

The DC component is preserved because it is a low s patial frequency (the DC
component is theoretically obtained at the spatial frequency (vx=0, vy=0)).
The group of points corresponding to the middle and high frequencies is
removed globally. However the frequency gain accord ing to the horizontal

and vertical pure spatial frequencies is not reduce d enough. This result

was expected thanks to the analysis of the filter's frequency response.

4 — The script filtering_spatial vsfreq. muses the Matlab commands *“ tic”and
“toc” and allows you to compare the computation times o f two filtering
methods: the first one uses the spatial domain (con volution with infilter)
and the second one uses the frequency domain (compu tation of FFT with fft2,
fftshift,and iifft2).

We note that it is computationally faster to perfor m two 2D Fourier
transforms and a filter multiplication than to perf orm a convolution in the

spatial domain. It is particularly true when the fi Iter size increases.

In fact when the filter size increases, the spatial filtering needs more
operations: “multiplication and accumulation” where as the frequency
filtering still needs two Fourier transforms (one f or the image and another

for the filter), a multiplication and one inverse F ourier transform (IFFT).

5 — The last part of the script hi ghpass. m allows us to display the
frequency response of the performed high-pass filte r. Here, we consider the
vertical Prewitt filter. Its convolution kernel is:

-1 -1 -l

0 0 0

1 1 1
After a fast analysis of this kernel, we note that the pixel value
differences will be increased according to the vert ical direction and
reduced according to the horizontal direction. The filter is thus a high
pass filter for the vertical frequency. This result is strongly visible on

the image of the filter frequency response:

-0.5

-0.4

-0.5 -0.4 -0.3 -0.2 -0.1 0 01 0.2 03 0.4
We note that the filter is strongly selective neith er for the spatial
frequencies nor for the orientation (tolerance of i nclinations is about
45°).
By filtering the image FRUI T_LUM . BMP with the vertical Prewitt filter, we

create the following image:

The horizontal edges of the original image are dete cted.

I+

Another filter is performed. This is the horizontal

Prewitt filter. Its
convolution kernel is:
-1 0 1
-1 0 1
-1 0 1

The vertical edges of the original image are detect

50 100 150 200 250 300 350 400

450 500

Such filters are typically used to enhance edges in an image by adding the
original image to the filtered image.

Chapter 3 — Linear filtering

TEST

Let us consider linear filters H which are defined by a 2D convolution kernel called 4. The
kernel size will be 3x3 for this entire test. The h(0,0) element is located on the center of the
kernel support. I, stands for the input image and Ig stands for the output image. Iy is a
grayscale image. Its luminance values belong to the range [0, 255].

1 — What is the 3x3 convolution kernel A; of the Identity filter (such as Is= I;)?

2 — Let H; be the filter whose convolution kernel A; is:
010
141
010

2.1 — What is the DC gain of this filter (gain according to the spatial frequencies vx = 0 and
vy = 0)?

2.2 — If the image signal is constant and equal to A on an image area whose size is larger or
equal to 3x3, what is the Iy computed value at the center of this area?

3 — By editing a Matlab program, perform the filtering of an (M % N) image Iy whose kernel is
h;,. The output image must be the same size as the input image I,. What do you notice on the
object edges of the image “Boats_lumi.bmp”?

4 — We want to enhance the contrast of the image Iy objects. To do that, we want to create a
third, functionally equivalent filter to find the difference between the Identity filter and a
fraction (value: Q) of the filter whose kernel is ;.

Identity 1
filter
Iy
I Flﬁter > o
2

Write the Matlab program to create this third filter. Visualize the results with the following
values of a: 0, 1/10, 1/4, 1/2. Describe the results obtained on the zones corresponding to the
fishing boom and the fishing rope on the image “Boats lumi.bmp”.

	Neighborhood and operators
	Exercise on 2D convolution
	Classical linear filters
	Exercise about 2D FFT
	Exercise on the representation of the frequency response of an image
	Test of the chapter 3

