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Chapter 3

Fundamental of Image Processing

Linear Filtering

The Concept of Neighborhoods
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The Concept of Neighborhoods

• Point P: affix p = (m, n)

• Neighborhood: V(P) = {P’ connected to P}

Discrete image domain

Examples:   4-N 8-N

4-connected neighborhood 8- connected neighborhood

P

V (P)

0
0

m

n

M -1

N -1

 

 

Image processing is fundamentally based on techniques using neighborhoods. An 

image processing which is performed at the affix p of the pixel P depends not only on this 

pixel P but also on pixels in its neighboring area. Let us consider a pixel P whose location in 

the image is defined by the coordinates (m, n). Its affix is thus p = (m, n). A neighborhood 

V(P) of the pixel P can be defined by a set of pixels P' that are connected to P. 

The pixel P (circled in the figure) belongs to its own neighborhood V(P). 

We must here define the concept of connectivity: the criteria that describe how pixels within a 

discrete image form a connected group. Rather than developing this concept, we show here in 

the top figure the two most common examples: 

- a “4-connected” neighborhood: the surrounded pixel has only four neighboring pixels. 

The distance between the surrounded pixel and any pixel of its neighborhood is d4 ; 

-  a “8-connected” neighborhood: the surrounded pixel has eight neighboring pixels. 

The distance between the surrounded pixel and any pixel of its neighborhood is d8 ; 

 

We define the two following distances in the case of a digital neighborhood (square sampling 

structure): 

  

� d4(P, P’) = | m – m’ | + | n – n’ |; 

� d8(P, P’) = Sup( | m – m’ |, | n – n’ | ). 
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� Transverse filter: h is the 2D impulse response called also the 

Point Spread Function (PSF) .

Neighborhood operators

Linear filters (convolution)

• Infinite Impulse Response  filter (IIR)

• Finite Impulse Response  filter (FIR)

 

 

A linear filter builds an output image IS from an input image Ie. Typically IS is the same size 

as Ie. Each pixel PS (affix pS = (mS, nS)) within the output image IS is computed from the 

neighboring pixels V(Pe) of point Pe (affix pe = (m, n)) in the Input image Ie. Generally: pS = 

pe, i.e. m = mS, and n = nS. 

Let us consider a transverse filter (the simplest case): the output value of the pixel PS is 

computed as a weighted sum of neighboring pixels V(Pe). Linear filtering of an image is thus 

accomplished through an operation called convolution. 

Here is the example for a transverse filter where the output value Is(m, n) of the pixel PS is the 

linear sum of the values Ie (m, n) of the neighboring pixels Pe, weighted using the coefficients 

h (i, j) of the Point Spread Function (PSF): 

∑ ∑
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Note that the neighborhood size is thus defined by the Finite Impulse Response (FIR) « h ». 

There are also recursive filters. To compute the output values of the pixels IS is more complex 

because the linear combination depends on: 

- the neighborhood of Ie (m, n), the associated set of coefficients is {ai’,j’}; 

- previously-calculated output values of Is(m, n) go back into the calculation of the 

latest output Is(m, n). The associated set of coefficients is {bi,j}. 
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The result depends on the way you choose to scan the image Ie (causality) because that 

directly influences the previously-calculated values IS (m, n). 
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I s (m, n) = h(i, j).I e(m − i, n − j )
i=−1

+1
∑
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Example – Convolution – Correlation

Convolution kernel : h =
h ,− 2 h h h h

h , h h h h
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I s (m, n) = h (i, j).I e(m + i, n + j)
i=−1

+1
∑

j=−2

+2

∑ *

, ,

Example : filter support of size (3 × 5)   (3 in vertical and 5 in horizontal)

Convolution

Correlation Let    h* (i , j)= h (-i,-j)     

( => symmetric of h  with respect to (0,0) )

 

 

In the case of linear filtering using convolution, the filter is completely characterized by the 

coefficients { h(i,j) } (which can also be written { hi,j } to remind us that “i” and “j” are 

discrete variables). These coefficients define the convolution “kernel” of the filter. 

This kernel defines: 

- the neighborhood V(Pe) to use (in the example it is a (3×5) neighborhood where the 

position (0,0) must be centered on Pe); 

- the respective weightings h(i, j) of each neighboring pixel needed to calculate the new 

value PS. 

 

When the size of the rectangular neighborhood support (I, J) and the weightings are known, 

we can calculate all the pixels of the image Is: 

∑∑
∈ ∈
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Note: When computing an output pixel at the boundary of an image, a portion of the 

convolution kernel is usually off the edge of the image Ie. It is thus necessary to specify 

“boundary conditions” to process border distortions (simple solution: to consider only the 

pixels in the image). Some ways of dealing with the boundaries are described in the exercise: 

“Linear filtering” in this chapter. 



For example, let us consider a linear filter « h ». Its convolution kernel is: 
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In fact this filter is the sum of a “Laplacian” filter (contour detection) and an Identity filter. 

Together they form a new filter “h”, an “enhancement” filter. 

Let the 3×3 image Ie be defined by: 
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This image Ie is filtered by h.  

Here are all the steps to compute the output value of the central pixel IS(1, 1): 

IS(1,1)  = ∑
+

−=
∑
+

−=
−−

1

1i

1

1j
j)i,1(1eI.j)h(i,  

 = 1)i,1(1eI.h(i,1)0)i,1(1eI.h(i,0)
1

1i
1))(i,1(1eI.1)h(i, −−+−−+∑

+

−=
−−−−  

 = 

 +−++−++−− 1,0)(1e1,1).Ih(1,1)(1e1,0).Ih(1,2)(1e1).I1,h(  

  (1,0)eh(0,1).I(1,1)eh(0,0).I(1,2)e1).Ih(0, ++−+  

  

−+−+−−+ 1,0)(1eh(1,1).I1,1)(1eh(1,0).I1,2)(1e1).Ih(1,  

 = (0×13) + (-1×56) + (0×9) + (-1×45) + (5×0) + (-1×7) + (0×255) + (-1×125) + (0×4) 

IS(1,1)  = -233 

 

Warning: row and column indices of the input image are not the same as the indices of the 

convolution kernel. In the input image, indices run from 0 to M-1 (rows) and from 0 to N-1 

(columns). In convolution kernel, the element h0,0 is centered and the indices run from –I to +I 

(rows) and from –J to J (columns).  

 

Note that the bi-dimensional function « h
*
 », which is the symmetric of h with respect to (0, 

0), can be used to compute the output values of the pixel IS(m, n). The output values are thus 

defined as the correlation between  Ie and h
*
 : 

∑∑
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Typical examples of convolution masks
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• DC filter Gain:

• Symmetric filter : h (-i,-j) = h (i,j)       then: convolution ≡ correlation

=> H (νX, νY) is a real transfer function (no phase term)

Σ Σ h(i, j) = H (νX = 0, νY = 0)
i j

Convolution masks: 

( ∼ circular: 45 pixels  ; rectangular: 11×11)

3×3 Mask 3×5 Mask 5×5 Mask

 

 

The shape of a convolution mask can be one of many kinds. The size of the convolution mask 

also defines the size of the neighborhood. Some filter supports are presented here: 3×3, 3×5, 

and 5×5. 

As in case of 1D signals, we define the frequency response H(νX, νY) of the filter. It depends 

on the horizontal (νX) and vertical (νY) spatial frequencies. H(νX, νY) is the 2D Fourier 

transform of the impulse response: 

 

H(νX, νY) = ∑∑
n m

[ ])
Y

m
X

n(2jπexpn),(mh ν+ν−  

 

The DC component H(νX = 0, νY = 0) can be computed as the sum of all the convolution 

kernel coefficients h(i, j): ∑∑=
i j

)j,i(hDC_Gain    (DC stands for direct current, an 

electrical engineering term). 

 

The exercise “FFT” details the methods to compute and display the spectrum image and the 

frequency response of a filter. The notion of spatial frequency is developed there. In the 

special case, when the filter is symmetrical, H(νX, νY) is a real frequency response. 

 

Note: in the following chapters we will use the term “transfer function” instead of “frequency 

response” (it is a misuse of language). 



Exercise Chapter 3 – Convolution 

 

In this exercise, no programming is required. The goal is to perform a filtering by 

computing the convolution of an input image and the filter’s kernel. 

 

Convolution 

 

 We will use the convolution operator on a small portion of the original image 

“BOATS”. On the figure below, this portion is delimited by a red rectangle that contains a part 

of the fishing boat’s boom. 

 

 
Image « BOATS » 

 



The following array I0 contains the luminance value of the pixels which are in the (20×11) 

delimited zone. In two diagonal bands, we can easily distinguish the pixels which belong to 

the fishing boom and to the rope. 

 
 

The goal is to perform two kinds of filtering on some elements of this 2D array. 



1 – Low-pass filtering 
 

Let us consider a (3×3) low-pass filter. Its convolution kernel is: 
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After having performed this filter on the (20×11) area, we observe the following partial result: 

 

 
 

Fill in the gray fields to have the full output array IS (to round to the nearest integers less than 

or equal to the elements.). 



2 – Contrast enhancement filtering  
 

We wish to enhance the contrast of object edges in the delimited area. We use thus an 

“enhancement” filter which has the following convolution kernel: 
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After having performed this filter, we observe the following partial result: 

 

 
 

Again, fill in the gray fields to have the full output array. 



3 – Border distortions  
 

When computing an output pixel at the boundary of an image, a portion of the convolution 

kernel is usually off the edge of the image. Propose some examples of boundary conditions to 

fill in these “off-the-edge” image pixels. 



Solution to the exercise on convolution 
 
 
1 – Here is the 2D output array after low-pass filt ering with the (3 ×3) 
binomial filter: 

 
 
Here are all the steps to compute the output value of the pixel I S(11, 1): 
 

I S(11,1)= ∑
+

−=
∑
+
−=

−−
1

1i

1

1j
j)i,1(110I.j)h(i,

16
1 .  

 = 1)i,1(110I.h(i,1)0)i,1(110I.h(i,0)
1

1i
1))(i,1(110I.1)h(i,

16
1 −−+−−+∑

+
−=

−−−−.  

 = .
16
1


 +−++−++−− 1,0)(1101,1).Ih(1,1)(1101,0).Ih(1,2)(1101).I1,h(  

   + (11,0)0h(0,1).I(11,1)0h(0,0).I(11,2)01).Ih(0, ++−  

   +

−+−+−− 1,0)(120h(1,1).I1,1)(120h(1,0).I1,2)(1201).Ih(1,  

 =  
16
1  . [ 1x219 + 2x108 + 1x60 + 2x64 + 4x69 + 2x84 + 1x87  

        + 2x100 + 1x146 ] 
 = 1500/16 =  93.75 
 
Thus: I S(11,1) = E[ 93.75 ] = 93  
 



Displayed here are the images before (on the left) and after (on the right) 
filtering: 

 
 
Here, the smoothing effects (caused by removing the  high spatial 
frequencies) of the low-pass filter are strongly vi sible. 



2 – Here is the array after performing the 3 ×3 enhancement filter: 

 
 
Here are all the steps to compute the output value of the pixel I S(12, 1) 
for example: 

Is(12,1)= ∑
+

−=
∑
+
−=

−−
1

1i

1

1j
j)i,1(120I.j)h(i,  

   

 = 1)i,1(120I.h(i,1)0)i,1(120I.h(i,0)
1

1i
1))(i,1(120I.1)h(i, −−+−−+∑

+
−=

−−−−  

 = 
 +−++−++−− 1,0)(1201,1).Ih(1,1)(1201,0).Ih(1,2)(1201).I1,h(  

   + (12,0)0h(0,1).I(12,1)0h(0,0).I(12,2)01).Ih(0, ++−  

   +

−+−+−− 1,0)(120h(1,1).I1,1)(120h(1,0).I1,2)(1201).Ih(1,  

 =   0x209 + (-1)x218 + 0x174 + (-1)x219 + 5x108 + (-1)x60 + 0x64  
  + (-1)x69 + 0x84 
 = -26 
 
Note: here, the output luminance values can be nega tive or higher than 255. 
To display the image result, it is thus necessary t o scale the gray levels 
to the full range [0, 255]. 



Here is the display of the arrays before (on the le ft) and after (on the 
right) filtering: 
 

 
 
The enhancement filter which is performed is indeed  the sum of an Identity 
filter and a Laplacian filter (useful for edge dete ction): 
                    Identity    Laplacian    Enhanc ement 
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This filter enhances the contrast of the objects (l ike the fishing boom and 
rope) in the original image. 



3 – A lot of methods are defined to compensate the border distortions: 
zero-padding, border replication, etc. 
For more information about these boundary condition s, refer to the 
correction of the exercise: “Filtering” (chapter3).  
Here, we will only show some results for the low-pa ss filtering with two 
methods used to remove these border distortions. 
 

• Zero-padding : 
 
That is the simplest method: the "off-the-edge" nei ghborhood is set to 0. 
Zero-padding can result in a dark band around the e dge of the image: 
 

 
 

• Replication : 
 
The "off-the-edge" neighborhood is set to the value  of the nearest border 
pixel in the original image (to filter using border  replication, pass the 
optional argument ‘ replicate’  to the Matlab function imfilter). The border 
replication eliminates the zero-padding artifacts a round the edge of the 
image. 
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Examples of typical filter kernels

Support size (3 × 3) : the most common and the simplest

h = h = h = 

filters � :    H (0,0) = Σ Σ h(i, j) = 1

 
 
 

 
 

h = h = h = 

�

�

Contrast enhancementAverage Binomial

Horizontal Sobel Oblique gradient Laplacian

i j

Filters � :    H (0,0) = Σ Σ h(i, j) = 1
i j

 
 

 

The observation of the convolution kernel h gives some important characteristics about the kind 

and the effects of the filter used: 

- if all the elements are positive: h is low pass-filter. It performs a weighted average. For a 

8-bit pixel coding, when the result is more than 255, it is set to 255 by thresholding. This 

kind of filtering will smooth the image, it is useful to reduce noise in images; 

- if some elements are positive and some others are negative: a partial or complete 

differentiation is performed. The convolution kernel corresponds partially or completely 

to the behavior of a high-pass filter. A high-pass filter can be applied to sharpen the 

image, therefore preserving boundary detail. 

Some examples of typical filter kernels are presented here: 

- low-pass filters: a mean (‘average’) filter and a binomial filter that smooth the image. 

Compared to the simple averaging image, edge enhancement with the binomial filter is 

notably smoother; 

- high-pass filters: a contrast enhancement filter, oriented derivative filters (horizontal 

Sobel, oblique gradient) and a non-oriented derivative filter (Laplacian). 



Example: 

 

For example, a “binomial” low-pass filter (3 × 3) and an “oblique gradient” high-

pass filter are applied to the image LENA: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

After using the binomial low-pass filter, the edges and the textures are smoothed. One visualizes 
these effects on the shadows of the shoulder and the face. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

After using the gradient oblique high-pass filter, the diagonal edges of the image are enhanced.
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Filtering objectives

• Noise reduction

• Low-pass filtering before sub-sampling

• Contrast enhancement

Common filters:

“Low-pass” (with unitary DC gain)

Very low                             Low                          Medium

(spatial averaging)

“High-pass” (with unitary DC gain)

H1 = 1

9

1 1 1

1 1 1

1 1 1

 

 

 
 
 

 

 

 
 
 

H2 = 1
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1 1 1

1 2 1

1 1 1

 

 

 
 
 

 

 

 
 
 

H3 = 1
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1 2 1

2 4 2

1 2 1

 

 

 
 
 

 

 

 
 
 

H'1 =
0 −1 0

−1 5 −1

0 −1 0

 

 

 
 
 

 

 

 
 
 

H' 2 =
−1 −1 −1

−1 9 −1

−1 −1 −1

 

 

 
 
 

 

 

 
 
 

H' 3 =
1 −2 1

−2 5 −2

1 −2 1

 

 

 
 
 

 

 

 
 
 

 
 
 

The spatial filtering can be divided into 2 fundamental categories: 
- Low-pass filtering that reduces luminance variations. Therefore it smooths 

the image content and it reduces abrupt changes in intensity. The low-pass filter is 
typically used to reduce noise effects and to remove the spatial high frequency 
content of the image (details of the image) before sub-sampling (to remove 
aliasing effects or parasite frequencies cf. chapter 1) ; 

 

- High-pass filtering that enhances abrupt luminance variations which 

characterize typically the object edges and the details in an image. For 
example, a high-pass filter with unitary DC gain can enhance the contrast of the 
original image. 

 
The presented convolution kernels are only some examples of typical filters. The user can 
choose or define specific filters that he/she needs to perform image processing. 



The Fourier transform of the impulse response of a linear 2D filter gives the frequency 

response of the filter. The bottom figure presents the frequency response of the binomial filter 

H3 (image on the left): 

 

 
 

The two-dimensional spectrum of an image or a filter represents the magnitude of the Fourier 

transform according to spatial horizontal frequencies “νX” and vertical frequencies “νY”. 

Usually the Fourier spectrum of an image is displayed on a plane (representation by a top view 

of the magnitude: image on the right). 

We can observe on the Fourier spectrum that the binomial filter has the behavior of a low-pass 

filter for the horizontal and vertical frequencies. The variations of luminance along the 

horizontal and vertical spatial axes are thus reduced: the image is “smoothed”. 
Here is the Fourier spectrum of the « oblique gradient » low-pass filter which was used on a 
part of the image LENA: 
 

 
 
The filter lets only diagonal high frequencies pass. The variations of luminance along the 
diagonal directions are enhanced on the filtered image. The diagonal edges and details are 
highlighted. 
 
The concepts related to the 2D Fourier transform of an image or a filter and to spatial 

frequencies are more fully developed in the exercise "FFT" of this same chapter. 



  

   
Let us perform three different low-pass filters on the grayscale image Lena. These filters have 
all a unitary DC gain. For each of them, the kernel origin h(0,0) is indicated by the horizontal 
and vertical marks “0”. 
 

Note: the filters 1 and 2 are respectively 2×2 and 3×3 average filters. After image filtering, the 

output luminance value of each pixel is the mean value of all the neighboring luminance 

values (size 2×2 for the filter 1 and 3×3 for the filter 2): the image is thus “smoothed”. 

3

¼¼

¼¼

0

0

1/91/91/9

1/91/91/9

1/91/91/9

0

0

01/80

1/81/21/8

01/80

0

0

• Three examples of convolution kernels for image low-

pass filtering.

• Unitary DC gain.

Filter 1 Filter 2 Filter 3

Examples of low-pass filters



 

 
 
 
 
 
 
 
 

Original image Lena 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Filters (1) (2) (3) 

 

 
 

 

 
 
At the top is the original image. At the bottom, from the left to the right, the images which are 
respectively filtered by low-pass filters 1, 2 and 3. One can distinguish some smoothing effects 
on the shadows from the face of Lena, however these effects are hardly visible to the naked 
eye. The human eye is in fact less sensitive to the spatial high frequencies and it does not 
distinguish that removing the high frequencies has involved loss of details from the original 
image. The low-pass filtering thus involves only few losses in visual quality and it allows you 
to sub-sample without aliasing effects. 
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Separable 2D filters: convolution of two “1D filters”

[ h2-D] ≡≡≡≡ [ h1-D
(V)] ⊗⊗⊗⊗ [ h1-D

(H)]

I
s
(m,n) = h(m,n)  ⊗ I

e
(m,n) : 2D linear filtering

I
s
(m,n) = h

V
(m) ⊗ [h

H
(n) ⊗ I

e
(m,n)] : convolution of two 1D filters

I
s
(m,n) = h

V
(m) ⊗ I’(m,n) = h

H
(n) ⊗ I’’(m,n) : commutative operator

With:

I’(m,n) = h
H
(n) ⊗ I

e
(m,n)         row by row 1D filtering

I’’(m,n) = h
V
(m,n) ⊗ I

e
(m,n)   column by column 1D filtering

• Constraint : columns and rows of h2-D must have proportional elements.
Example 1 Example 2

 

 

A 2D filter is “separable” if the kernel [h2D] can be decomposed into two 1D kernels (which 

are applied successively). The filtering is performed in one dimension (rows), followed by 

filtering in another dimension (columns): [h2D] = [h1D
(V)

] ⊗ [h1D
(H)

], where the symbol ⊗ 

stands for convolution operator. 

The rows and the columns in the original image are thus separately filtered. Whatever the first 

1D filtering performed, the output image IS(m, n) is still the same. To be separable, a 2D filter 

must have proportional elements on the rows and the columns: mathematically that is seldom 

true, however several usual 2D filters are separable. 
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Examples of separable filters

• Averaging

• Contrast enhancement 

• Binomial

• Horizontal Sobel

• Advantage: low complexity
2D Filter: M × N multiplications and additions per pixel (MAP)

2D separable Filter: M + N multiplications and accumulations per pixel

1

3
1 1 1[ ] ∗ 1

3

1

1

1

 

 

 
 
 

 

 

 
 
 

= 1

9

1 1 1

1 1 1

1 1 1

 

 

 
 
 

 

 

 
 
 

−1 3 −1[ ] ∗
−1

3

−1

 

 

 
 
 

 

 

 
 
 

=
1 −3 1

−3 9 −3

1 −3 1
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4
1 2 1[ ] ∗ 1

4

1

2

1

 

 

 
 
 

 

 

 
 
 

= 1

16

1 2 1

2 4 2

1 2 1

 

 

 
 
 

 

 

 
 
 

−1 0 1[ ] ∗
1

2

1

 

 

 
 
 

 

 

 
 
 

=
−1 0 1

−2 0 2

−1 0 1

 

 

 
 
 

 

 

 
 
 

⊗

⊗

⊗

⊗

 
 

 

Here are some examples of separable 2D filters with the decomposition into 1D filters. The 

complexity is low for 2D separable filters because the number of operations (multiplications 

and additions) is reduced, thus the computation time is faster. 

Typically if the kernel size is M×N, we need only (M+N) multiplications and (M+N-2) 

additions instead of M.N multiplications and M.N-1 additions for a non-separable 2D filter. 

Often the term “MAP” is preferred (multiplications and accumulations per pixel): there are 

(M+N) MAP for a separable filter instead of M.N MAP for a non-separable filter. 



1 Exercise Chapter 3 - Fast Fourier Transfonn (FFT)

In this exercise, you will visualize the (spatial) frequency response for sorne examples of
Images.
Before starting, load and unzip the file "fft. zip" which contains the scripts you will need
throughout this exercise.

Discrete Fourier Transform

1 - Add your own working folder paths to the path list in the path browser then open and
analyze the scriptfft2d_sinus.m. Use the Matlab help (command helpwin) to understand how
the Matlab functions that we are using work. What is the kind of the 2D input signal?

2 - Modify the spatial period value (called period in the script): enter the values 4, 8, and 16
(orientation 0). For ail these period values, note the magnitude and the nonnalized frequencies
of the lines down. Change also the amplitude and the DC offset (tir) of the 2D signal.
Interpret the results. Next, test the period value 17 and interpret again.

3 - Use the scriptfft2d_resolution.m to compute a higher frequency resolution FFT. Change
now the 2D signal orientation: test pi/2 then pi/4 (period ~ 16 and period ~ 16*sqrt(2)).

4 - Run the scriptsfft2d_square.m andfft2d_checkerboard.m. Change the parameters and
interpret the results. By using the script fft2d_sinus.m, write a script that displays a natural
image and its frequency response. Run this script on several images.

http://webdav-noauth.unit-c.fr/files/perso/ythomas/cours_unit/fichiers_matlab/fft.zip


Solutioo. to thQ QXQrcisQ on FFT

l - ThQ script fftld_sinus,," allO\>'s you to visuali'Q thQ ~iscrQh FC<lri.,..
transtorm ot a 2D sinusoi~al si\lndl.
First, "Q ~dinQ thQ dlarachristics ot thQ 2D si\lndL iITl'-\lQ SÜQ, spatial
p<lrioo, oriQntation, arrvlitl~Q, aoo DC ottsQt. ThQn thQ tunctictl
g~n~ntion_sinus \I"".,..ahs a 2D sill'lal trom thQSQ charachristics IthQ
tunctictl g~n~ntion_sinus has b<l"" "ritt"" tor YC<lI.
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... noh that thQ horüontal ~irQction ot thQ sinusoi~ im'OlvQs thQ
\lQnQratictl ot v.,..tical baoos on thQ iIM\lQ Ildtl. OnCQ thQ sinusoi~ iITl'-\lQ
is cOITVlt<od an~ storod in ;"'1, "Q oorrpuh its fast FC<lri.,.. transto:rm IFITI
"ith thQ Matlab tunctictl fftl.

Th"" "Q USQ thQ tunction fftshift to shitt thQ 'Qro-trQquQncy OOrrpctl""t 10,
01 ot thQ fast FC<lri.,.. transto:rm to thQ cQnt.,.. ot thQ spQctrum.

SPQctruml • tttshittlsp<lctrumll;

ThQ nonnaliUld VQctou rQp;r'Qs""t
tr<KjuQnciQs. H.,..Q thQSQ vQctors
oorrpctl"" ts, \Ii vill\l '

horüontal
thQ SdITIQ

aoo vQrtical spatial
l""\lth an~ thQ SdITIQ



The absolute value (modulus) of the spectrum can be displayed with the
command:

imagesc (vt! \Tt! (abs (spectruml) )) i

Here is the image of the spectrum modulus:
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We see two white points. We will show later that these points are not two
delta functions but they are the two main lobes of a sinus cardinal
function because the 2D sinusoidal function is bandlimited:
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The spatial period is the minimal number of pixels between two identical
patterns in a "periodic ff image. The minimal spatial period in an image is
thus two pixels:

~,
!'--minimal penolt. 1 pixels

The maximal normalized spatial frequency Vmal: is thus equal to:

1 i
minimal period 2



We can plot the image frequency response along the normalized spatial
frequencies which belong to the range [-0.5, 0.5].
Let T be the period. The corresponding normalized frequency Vnorm is defined
by: Vnorm = liT.

2 -

• Changing the period:

By decreasing the spatial period of the sinusoid (value
the image below:

4), we visualize

On the image, we observe one line per four pixels.
The magnitude image is displayed below:
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The two white points are located at the spatial frequency coordinates:
{V lX= -0.25, VIY= o} et {V 2X = 0.25, V2Y = o}

When the orientation of the 2D sinusoid is zero, we can represent one line
of this 2D signal by a 1D sinusoid signal which propagates along the
horizontal axis (Ox).
The absolute value of the horizontal spatial frequency VIX is equal to the
one of V2X • In fact: VlX = -V2X thus IvlXl = l-v2X l. This absolute value is the
inverse of the spatial period: VlX= -liT and v 2X = liT.



• Changing the amplitude

The sinusoid values belong to the range [-A, A], where A stands for the
amplitude. The change of the amplitude A influences the magnitude values of
the two white points that we had previously noticed on the spectrum image.

A= 10

-2

-4

s(x)=Asin(2.pi.fo.x)

• Changing the DC offset:

10

By increasing the DC offset VM, we visualize the images below:
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The spectrum modulus has now a new frequency component at the center (image
on the right) adding to
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• Period T = 17:

-OA 160

-0.3 140

-0.2 120

-0.1 100

0 80

0.1 60

0.2 40

0.3 20

OA 0

-OA -0.2 0 0.2 OA 0 O.ë

We compute the fast Fourier transform with the spatial period 17:
~.5 1W

On the Fourier plane (left), the two white points are "spread out". On the
right image, note that the frequency response is not composed of only two
impulses any more. The frequency response looks like the envelope of a
sinus cardinal function.

Let us consider a 10 sinusoidal signal to explain this result. This signal
is called f(x) and defined by:

f(x)=VM.sin(2.x.fo.x)

The spectrum F(Vx ) of this sinusoidal signal is thus defined by:

F (Vx) = VM .(2
I
j.l5 (Vx-Vxo)+i· l5 (vx+VXO))

where "j" stands for the complex number such as j2= -1, and vm liT.

The spectrum modulus IF(Vx ) 1 is plotted on the figure below:
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This spectrum is computed for a 10 sinusoidal signal of infinite support(x
ranging from -= to +=).
In practice we cannot represent an image on an infinite support, therefore
the 10 sinusoidal signal is multiplied by a rectangular pulse p (x). This
rectangular pulse is defined by:

(x) = {I if XE [-L/2; L/2]
P 0 else



Here is the graph of the function p(x)

p (x) ..

1

x
• L/2 o L/2

The spectrum P(vx) of this rectangular pulse function is defined by:

P (Vx) = L. sine (L.II."X)

Where ~sincff stands for sinus cardinal: sinc(x) = sin(x)/x.
In the script fft2d_sinus.m, the size of the input image is 128 x 128
pixels. The sinusoidal signal propagates along the axe (Ox) , therefore L =

128.

The spectrum modulus 1 P (vx) 1 is displayed on the figure below:

IP(vxll
'~

Note that the length of the lobes is l/L (except for the main lobe whose
length is 2Xl/L)

The visualized sinusoid fv(x) is thus the function defined by:
fy(x) = f(x) .p(x)

Its spectrum Fv(Vx) is given by the relation:

Fy(Vx) = F(Vx) 0P(vx) = t,VM .(-;-.P (Vx-Vxo)+j.P (vx+Vxo))



Let us consider the T-periodic sinusoidal signal fv(x)
and is band-limited on a support whose length is L.
response is plotted:
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Moreover, to represent the spectrum of this sinusoid,
transform is computed. The spectrum is thus computed for a
its points. By default, with the Matlab function fft2,
points is equal to the number of pixels in each direction
vertical)
Here the number of pixels is the same one according to two directions.
After FFT computation the spectrum modulus 1 Fvs 1 is thus represented by 128
points of the spectrum modul us 1 Fv 1 according to the hori zontal spatial

frequencies. The horizontal frequency resolution Avx is then defined by: Avx
~ 1/128.

Note that 11L = Avx : on the spectrum of the sinusoidal signal; the length of
any lobe (except the main lobe) is equal to the horizontal frequency
resolution,
If the period T of the 1D sinusoidal signal is inversely proportional to

the horizontal frequency resolution (i.e. liT = k.Avx , where "k" is a non
null natural integer), the spectrum modulus IFvsl represents only the two
main lobes of the spectrum modulus 1 Fvl (the other lobes are set to 0) :

"x

Iifqllflldeswhlrlls
computed the FFT



Then for the periods:

• T 4, .l=32X_1_
4 128 '

• T 8, .l=16X_1_
8 128 '

• T 16, l=8X_1_
16 128 '

The condition liT k.Avx is thus true for these three periods. We visualize
only the two maximal values of the main lobes. The other components are
zeroing therefore the spectrum modulus looks like two delta functions (cf.
1)

When the period is set to 17, the condition liT = k.Avx is not true. We
visualize thus some samples of the other lobes:

visualized points

1117

If you want to visualize the other lobes whatever the period is, you must
increase the spatial frequency resolution to satisfy the condition: Avx <
1/L.

3 The script :t:tt2d-resolution.m allows you to increase the frequency
resolution. We choose along one direction (the horizontal one then the
vertical one, or conversely) the number of pixels N2 to compute the FFT.
This number must be superior to the number N1 of points in the original
image along the same direction (horizontal or vertical). The value of the
padded points is zero.
Let us consider a simple (2X2) grayscale image:



We want to increase the frequency resolution to compute the fast Fourier
transform with 4 points along each direction instead of the two original
points. The fast Fourier transform is thus computed on the following image
(N2 =4) :

~•••
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higher frequency
Matlab function
a 2D 8-periodic

The four original pixels are marked by a red star. The other black pixels
(zero padding) have been added to create a (4X4) image.
When you want to compute the FFT in Matlab with a
resolution, you can pass the optional argument N2 to the
fft2: fft2(im1,N2 ,N2 ). Here are the results obtained with
sinusoid:
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By increasing the frequency resolution, aIl the spectrum lobes are sampled
even if the period is like liT = k.~vx.

Let us consider for example a X2 frequency resolution: ~VX2= 2 .~vx :

1 FvCvJJ

vx

AlI the lobes are now represented by a non-zero value (maximal value here) .



Changing the orientation:

Here are the results obtained after having set the orientation to rc/2
(period = 16 pixels)
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As expected:

The propagation is perpendicular to the original one (the bands are
now horizontal in the image on the left) i

On the right, the two points of the spectrum define a direction which
is perpendicular to the direction in the original spectrum
(orientation = 0) and to the bands of the associated left image.

In the same way, by setting the orientation to rc/4 (period T = 16 pixels),
the propagation orientation of the sinusoid is rotated by -rc/4. We
visualize horizontal and vertical periodic patterns. These ones also create
a diagonal periodic pattern whose period is equal to 16 pixels. The

horizontal and vertical periods are thus equal to ~ pixels:



on the image below, the spectrum modulus is represented by two white points

which are located at the coordinates: (- ~; ~ ) and(~;-~ J, where Vn = ~ .

These two points define a direction which is perpendicular to the bands in
the associated original image. The 20 image of the frequency response gives
several pieces of information about the spatial orientation of the original
signal.

4 By launching the script ~f2d square.m, you visualize the following
image:

The 20 signal is a square signal which propagates along the horizontal axis
(Ox). We can thus represent one line of this 20 signal by a 10 square
signal which propagates along the horizontal axis (Ox):
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The frequency response of the checkerboard image is displayed on the image
below (period _ 16) Here we plot the spectrum modulus of the two basic
square signals, the horizontal one and the vertical one (warning, they do
not appear when you dis play the frequency response) The spectrum
components of the checkerboard image are equal to the crossed components of
the t= frequency responses which are associated with the t= basic square
signals,

:m vertic~l1 squme sigtUll
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5 - Here is an example of a script for displaying the frequency response of
the image CWWN_WMI,

iml_imread (' CLOWN_LUMI, EMP' )
%" colormap for displaying in gray levels
figure (1);
imagesc (iml);
map _ 0,1/255,1;
map _ [map',map',map']
colormap (map) ;

"IT
[sizel, size2]_size(iml (, ,,1))
nb_pointl 2'sizel;
nb_point2 2'size2;
spectruml fft 2 (iml, nbyointl , nb_point 2) / (sizel' si ze2) ;
spectruml fftshift (spectruml);
%" To reduce the De component
spectruml _ 2'spectruml;
spectruml (sizel/2+1, si ze2/2+1) _spectruml (sizel/ 2+1, size2/ 2+1) /2;
\ normalized frequency vectors
vtl_ (-si zel/2 ,si zel/nb_pointl, (s~ zel/ 2 -s~zel/ nb po~ntl)) / s~ zel,
vt2_ (-si ze2/2 ,si ze2/nb_point 2, (s~ ze2/ 2 -s~ze2/nb po~nt2)) / s~ ze2,



% To display the spectrum modulus
figure (2) ;
imagesc(vtl,vt2, (abs(spectruml)))
% 3-D representation
figure(3)
[X,YJ=meshgrid(vtl,vt2) ;
mesh(X,Y,abs(spectruml))

Here is the result:

In natural images the De component is very often higher than the other
frequency components (middle and high frequency components). We prefer
generally to display the natural logarithm of the spectrum modulus instead
of the spectrum modulus itself. Here are the commands to type to display
the natural logarithm of the "Clown_lumi.bmp" image spectrum modulus:

% We display the spectrum modulus
figure (2) ;
imagesc(vtl,vt2, (loglO(abs(spectruml))))
colormap(map)

Here is the result:
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Exercise Chapter 3 – Linear filtering 

 

In this exercise, you will use Matlab to perform a linear filtering with various techniques.  

Before starting, load and unzip the file “linearFilter.zip” which contains scripts you will need 

throughout this exercise. 

 

Linear Filtering in frequency domain then in spatial domains 
 

1 – Open the script lowpass.m. Use the F9 key to launch the first part of the script (that 

computes the transfer function of the filter). Modify the support size and run the script again 

with F9. Explain the results. 

 

2 – In the second part of the script, we process an image with a spatial filtering. This filtering 

is performed by using the Matlab function conv2 (2D convolution) with two different optional 

parameters. Compare the results and conclude (you can change the support size then you must 

run the first part again). 

 

3 – In the third part of the script, we use the Matlab function imfilter with two different 

optional parameters. Compare the pixels on the right edge of the image and conclude. Use 

now the last part of the script to perform the frequency filtering instead of the spatial filtering. 

Observe the results. 

 

4 – Run the script filtering_spatialvsfreq.m. You will compare the computation time of the 

spatial filtering with the frequency filtering. Run the script again after having modified the 

support sizes and conclude.  

 

5 – Analyze then run the script highpass.m. Interpret the results. 

http://webdav-noauth.unit-c.fr/files/perso/ythomas/cours_unit/fichiers_matlab/filtreLineaire.zip


Solution to the exercise on linear filtering 
 

 

Linear filtering in the frequency domain and in the spatial domain 
 
1 – The first part of the script lowpass.m allows you to define a low-pass 
filter kernel. Here, the convolution kernel defines  an average filtering. 
Each pixel value is the mean value of the neighbori ng luminance values: 













111
111
111
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The magnitude of the frequency response is displaye d: 

 
 
As expected the high frequency components have been  removed. However the 
magnitude is still too significant for horizontal a nd vertical high 
frequencies. This low-pass filter is not strongly s elective. 
By increasing the size of the filter support (suppo rt=7), we display the 
following transfer function: 
 

 
 
By increasing the support size, we visualize that t he filter passband is 
reduced: the filter is more selective. The magnitud e is less significant 
for the middle and high frequencies. In fact the la rger the size of the 
filter support is, the larger the neighborhood is, therefore pixel values 
are the mean values of large neighborhoods: these p ixel values are thus 
close to each other (smoothing effect). The luminance variations according 
to (Ox) or (Oy) are thus low, that corresponds to low spatial frequencies. 



2 – By running the second part of the script lowpass.m, we visualize the 
following images: 

 
 
This images are computed with a 7 ×7 filter. The filtering is applied by 

computing the convolution “filter ⊗ image” with the Matlab function conv2. A 
smoothing effect appears on the two output images. However, in the Matlab 
Workspace, you can note that the size of the image imf2 (on the right) is 
smaller than the size of the image imf (on the left ). In fact these two 
output images are computed with the same function conv2 but the input 
optional parameters of this function are different:  
 
imf = conv2(im1,filtre); % (can be written imf=conv2(im1,filtre,’full’);)  
imf2 = conv2(im1,filtre, 'same' ); 
 
Let us consider an input image whose size is M 1 x N 1, and a filter whose 
size is M 2 x N 2: 
 

- The output image imf is created by computing the tw o-dimensional 
convolution of two 2D signals. Its size is thus (M 1+M2-1) x (N 1+N2-1). 

- The output image imf2 is created by computing the s ame two-
dimensional convolution but only the central part o f the result is 
preserved. The output image size will be thus the s ame as the input 
image size. 

 
Note that there is a third optional parameter ( ‘valid’ ) of the function 
conv2. The output image is only those parts of the convo lution that are 
computed without the zero-padded edges. The output image size is thus (M 1-
M2+1) x (N 1-N 2+1).  
 



3 – By running the third part of the script lowpass.m, we display the 

following images (7 ×7 filter support): 

 
 
These two images are computed with the Matlab funct ion imfilter: 
 
imf3 = imfilter(im1,filtre); 
imf4 = imfilter(im1,filtre, 'replicate' ); 
 
Note that the right side is darker on the left imag e. When you compute the 
pixels at the boundary of an image, a portion of th e convolution kernel is 
usually off the edge of the image. To compute the c onvolution, it is 
necessary to define boundary conditions to fill in these “off-the-edge” 
image pixels. Matlab allows you to use some usual b oundary conditions: 
zero-padding (method by default), replication ( 'replicate' ), symmetry 
( 'symmetric' ), etc. 
 
Examples of boundary conditions : 
 
Let us consider the following M × N grayscale image I: 
 

 
 
We want to apply the 3 ×3 average filter “h”. The pixels marked red have no  
neighborhood off the edge. 



• Zero-padding : 
 
Let us consider that the "off-the-edge" neighborhoo d is set to 0. The 
convolution can thus be performed on the pixels mar ked red. 

 

 
 
That is the default method used by Matlab. 
 

• Duplication : 
 
Let us consider that the boundary pixels are replic ated to create an off–
the-edge neighborhood. The "off-the-edge" pixels ar e set to the value of 
the nearest border pixel in the original image. 
 

 
 
Note: in the special case of the 3 ×3 filters, the replication method is 
equivalent to the symmetry method. 



The last part of the script highpass.m allows you to display the frequency 
response of the image MANDRILL_LUMI.BMP before and after filtering: 
 

 
The image on the left shows the frequency response of the image 
MANDRILL_LUMI.BMP before filtering. There is a white zone on the ima ge 
center which corresponds to the image’s DC (i.e. co ntinuous) component. 
The group of points around this DC component corres ponds to some middle and 
high frequency components of the image (contours, d etails, transitions, 
etc.). 
The image on the right shows the frequency response  of the image 
MANDRILL_LUMI.BMP after low-pass filtering. 
The DC component is preserved because it is a low s patial frequency (the DC 
component is theoretically obtained at the spatial frequency ( νX=0, νY=0)). 
The group of points corresponding to the middle and  high frequencies is 
removed globally. However the frequency gain accord ing to the horizontal 
and vertical pure spatial frequencies is not reduce d enough. This result 
was expected thanks to the analysis of the filter’s  frequency response. 
 
4 – The script filtering_spatialvsfreq.m uses the Matlab commands “ tic” and 
“ toc” and allows you to compare the computation times o f two filtering 
methods: the first one uses the spatial domain (con volution with imfilter) 
and the second one uses the frequency domain (compu tation of FFT with fft2, 
fftshift, and ifft2). 
We note that it is computationally faster to perfor m two 2D Fourier 
transforms and a filter multiplication than to perf orm a convolution in the 
spatial domain. It is particularly true when the fi lter size increases. 
In fact when the filter size increases, the spatial  filtering needs more 
operations: “multiplication and accumulation” where as the frequency 
filtering still needs two Fourier transforms (one f or the image and another 
for the filter), a multiplication and one inverse F ourier transform (IFFT). 



5 – The last part of the script highpass.m allows us to display the 
frequency response of the performed high-pass filte r. Here, we consider the 
vertical Prewitt filter. Its convolution kernel is:  
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After a fast analysis of this kernel, we note that the pixel value 
differences will be increased according to the vert ical direction and 
reduced according to the horizontal direction. The filter is thus a high 
pass filter for the vertical frequency. This result  is strongly visible on 
the image of the filter frequency response: 

 
 
We note that the filter is strongly selective neith er for the spatial 
frequencies nor for the orientation (tolerance of i nclinations is about ± 
45°). 
By filtering the image FRUIT_LUMI.BMP with the vertical Prewitt filter, we 
create the following image: 

 

 
 
The horizontal edges of the original image are dete cted. 



Another filter is performed. This is the horizontal  Prewitt filter. Its 
convolution kernel is: 
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The vertical edges of the original image are detect ed. 
 

 
 
Such filters are typically used to enhance edges in  an image by adding the 
original image to the filtered image.  



Chapter 3 – Linear filtering 

 

TEST 
 

 

Let us consider linear filters H which are defined by a 2D convolution kernel called h. The 

kernel size will be 3×3 for this entire test. The h(0,0) element is located on the center of the 
kernel support. I0 stands for the input image and IS stands for the output image. I0 is a 

grayscale image. Its luminance values belong to the range [0, 255]. 

 

1 – What is the 3×3 convolution kernel h1 of the Identity filter (such as IS = I0)? 
 

2 – Let H2 be the filter whose convolution kernel h2 is: 
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2.1 – What is the DC gain of this filter (gain according to the spatial frequencies νX = 0 and 
νY = 0)? 
  

2.2 – If the image signal is constant and equal to A on an image area whose size is larger or 

equal to 3×3, what is the IS computed value at the center of this area? 
 

3 – By editing a Matlab program, perform the filtering of an (M × N) image I0 whose kernel is 
h2. The output image must be the same size as the input image I0. What do you notice on the 

object edges of the image “Boats_lumi.bmp”? 

 

4 – We want to enhance the contrast of the image I0 objects. To do that, we want to create a 

third, functionally equivalent filter to find the difference between the Identity filter and a 

fraction (value: α) of the filter whose kernel is h2. 
 

 

 

 

 

 

 

 

 

Write the Matlab program to create this third filter. Visualize the results with the following 

values of α: 0, 1/10, 1/4, 1/2. Describe the results obtained on the zones corresponding to the 
fishing boom and the fishing rope on the image “Boats_lumi.bmp”.  
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