

2005 D. BARBA 1

Chapter 1

MULTIMEDIA SIGNAL PROCESSING

Introduction

2005 D. BARBA 2

Introduction

• Digital image & video processing : a new domain and technology

- Mathematics of information

- Signal processing

- Electronic & optronics systems

- Computer sciences and micro-processors (VLSI, DSP)

• Lots of methods

- ad’hoc & founded as well

- Needs of methodology

• Widespectrum of applications

When we speak of digital image processing, we mean the set of techniques used to

modify a digital image in order to improve it (in terms of quality), or to reduce its size (in

terms of bits compression encoding) or to get information out of it. Processing digital images

is a new sector of knowledge, which has quickly developed thanks to the emergence of new

information technologies. It relies mainly on the mathematics linked to information, signal

processing, electronic systems and the advance in microprocessor computation capacities,

particularly those that have been exclusively developed for signal processing and which offer

high computation speed and capacity (DSP, etc.).

As digital image processing is in its early stages and its scope of application is quite spread, it

has quickly become apparent that a methodology must be created and the domains of

application separated out. Image processing can now be seen as four distinct fields of action:

analysis, synthesis, coding and quality enhancement.

To start with, a description of these four domains will allow us to better understand what

image processing really is. Following this, we will look at how to obtain the digital images

(by digitization of analog images) that we wish to process.

2005 D. BARBA 3

Introduction

A picture is worth one thousand words

and a video is worth one thousand sentences

We come in contact with all sorts of images in our daily environment: photographs of

landscapes, of people, computer-generated drawings and paintings, images from medical

radiology, satellite images, and so on. Some of these images (such as via satellites and for

medicine) cannot be directly observed, while others have characteristics that can be extracted

automatically, stored and sent. The processing that could be carried out on these images is

highly varied, as the images we meet in our environment are also varied, by their nature and

properties as well as the scenes they describe. They are all different but, evidently, it is not

conceivable to create a specific type of processing for each one. This has led to a

classification of image processing that does not rely on image characteristics, but rather on the

objective of the processing. We can distinguish four types of domains of application for the

digital image processing:

• restoration and enhancement image,

• image analysis,

• image coding with data compression,

• image synthesis.

2005 D. BARBA 5

Image & Video processing types: 4

Analysis

Image & video

processing

Enhancement

& Restoration
Data compression

Synthesis

System

Modeling

Vision model

Algorithmic &

Artificial Intelligence

Let’s now look in detail at the four fields of action linked to digital image processing.

Enhancement and restoration:

Let’s consider an observed image I0 with which we associate a signal s0 that we model

as: s0 = f(su, d, b)

where: - su is the usable image signal obtained from an ideal image (without any loss);

- d is the distortion function which operates on the ideal image (geometric distortions,

blur, etc.);

- b is noise;

- f is an observation function dependant of these two signals and of the distortion

function.

The processing carried out on I0, which will output the transformed image IT, must enable the

information contained in IT to be used in a more efficient manner than the information in the

directly observed image I0. If a change occurs in the presentation characteristics of the image,

we can talk of an enhancement process, whereas if there is a partial inversion in the quality

loss, we can talk of a restoration process (for example, 2D linear filters, 2D adaptive filters

etc.).

2005 D. BARBA 5

Image & Video processing types: 4

Analysis

Image & video

processing

Enhancement

& Restoration
Data compression

Synthesis

System

Modeling

Vision model

Algorithmic &

Artificial Intelligence

Image analysis:

This refers to partially or fully describing the scene from the observed image (objects

detection, object dimensions, position in space, etc.).

Classically, this analysis process takes place in 3 successive stages:

- pre-processing and extraction of the characteristic traits,

- classification and pattern recognition,

- description and possibly interpretation of the image content.

Note however that image analysis also varies depending on the support medium: the problems

raised by the analysis of 2D images, of 3D images or of moving images are quite numerous,

with a special attention to moving images due to the techniques used in that case and the

nature of the required objectives.

2005 D. BARBA 5

Image & Video processing types: 4

Analysis

Image & video

processing

Enhancement

& Restoration
Data compression

Synthesis

System

Modeling

Vision model

Algorithmic &

Artificial Intelligence

Image coding with data compression:

The basis for representing a digital image is a rectangular 2D table of elements called

pixels. This implies to handle and memorize a large amount of pixels. For a simple grayscale

image, typically 512×512 pixels (256 000 pixels) and 8 bits per pixel must be memorized to

obtain a good resolution (8 bits to code one pixel, which gives per pixel a number of 2
8
 = 256

possible values). For high-resolution color images, or for moving images, the number of bits

necessary for image representation quickly becomes enormous to store or send it.

Encoding an image aims to obtain a representation of that image that requires a greatly

reduced number of bits in comparison with the original image representation.

To measure this reduction, we use a compression rate τ defined as:

encodingafter image thengrepresenti bits ofnumber

tionrepresenta image basic thengrepresenti bits ofnumber =τ

This rate must be higher than 1 for real compression to take place.

As the number of bits for the basic image representation is fixed, the compression rate is in

fact inversely proportional to the number of bits representing the image after encoding. If you

want to make an exact reconstruction of the image after decoding, you need to use reversible

encoding. This creates a constraint that means that the compression rate is often rather low.

To increase the compression rate significantly, you need only to rely on a representation that

is visually exact. In this case, the human eye will perceive no difference between the original

image and the image that is reconstituted after decoding. In addition, the complexity of the

encoding/decoding must be limited. Encoding a digital image involves finding a healthy

balance between the compression rate that will be high enough to make data storage and

transmission easier but that will not unduly affect the picture quality, and simultaneously

keeping in mind that decoding complexity must be restrained.

2005 D. BARBA 5

Image & Video processing types: 4

Analysis

Image & video

processing

Enhancement

& Restoration
Data compression

Synthesis

System

Modeling

Vision model

Algorithmic &

Artificial Intelligence

Image synthesis:

The goal of this is to reconstruct an image that resembles an image from the simulated

scene, from a description of the scene, the objects making it up, its lighting characteristics

(e.g. lightening orientation, intensity) as well as the capture device (CCD or CMOS camera,

etc.). This reconstructed scene may resemble reality or be purely fictional. The first

applications concerning image synthesis were oriented towards training simulators (flight and

vehicle simulators) before involving out into other domains (audiovisual, cinema, art etc.).

We should point out that image processing also relies on studies linked to the structure of

processing machines. An image contains a significant amount of data. In fact, for a moving

image there are N×M×P samples per second to process (N dots per line, M lines and P images

per second). Image processing requires powerful calculation capacity. It needs high

performance architectures with high degrees of parallelism and significant processing speeds.

Digital image processing has just been presented in accordance with the four main

domains of application. We can now look at this from another angle, by concentrating of the

nature of the processing results.

We can characterize image processing not simply in terms of its domains of

application, but also according to the nature of the results that will be put out. There can be

two types of input: an image or a description.

� From an image input

The output may be:

- image type

This is the case with image coding for data compression, image enhancement

and restoration of poor quality images; these three have already been presented.

- data type

This is the case when you make an elementary image analysis. You are

interested in the spatial dimensions of an object in the scene, its position or its

color.

- pattern type

This is also a case of image analysis, but a more elaborate one. This involves

extracting and recognizing the objects observed in the scene.

2005 D. BARBA 6

Image & Video

2D ; 3D ; 2D+t ;3D+t

Data

Image/video Description

Pattern/Object

Parameters

measurement
Pattern Recognition

Enhancement

& Restoration
Coding &

Decoding

Image/video

Analysis

Image/video

synthesis

General view of Image & Video processing

- scene description type

This is also a possible output for an image analysis, but in the most advanced

version. The image is entirely broken up so that each object present in the

scene can be recognized. The scene is described in its totality and can be

interpreted.

� From a description input

For the output, the only expected type is an image. The domain of application involved is

image synthesis. We wish to reconstruct the image according to a given description. What

objects are present? What are their dimensions? Where are they in the scene? How are they

lit? What are the parameters (focal length, viewing angle etc.) of the camera doing the

filming?

You have now studied image processing from two different aspects: these aspects are

nevertheless strongly interconnected. We can now go on to look at the characteristics of the

signal that we wish to process: the image.

2005 D. BARBA 7

Basic Image/Video Properties

• Image/video signal is a 2-D/2-D+t scalar/vectorial signal which is
complex:

• Non stationary

• Non Gaussian

• Non isotropic

• Two (image) or three (video) main features

– Contours: abrupt change in some important characteristics

– Texture: spatial variation of the 2-D signal apart its local mean value
(mean value, texture description)

Edges are locally 1-D signals

– Motion: in case of video (time-varying image sequence)

An image is a 2D scalar (grayscale image) or vectorial (color image for example) signal.

Video which is a succession of images ordered temporally is a 2-D+t (t: time) scalar (gray-

scale video) or vectorial (color video) signal.

The "Image" signal is complex because it is:

- non-stationary: its contents in space frequencies change with the space

coordinates;

- non-Gaussian: its statistical properties do not follow a Gaussian probability law;

- non-isotropic: the properties of the image signal are not the same ones with the

orientation (e.g. in the images taken on the ground, the horizontal and vertical

directions are more frequent for contours than the oblique directions).

The classical methods and tools used in signal processing are often designed for stationary,

Gaussian or isotropic signals (e.g. Discrete Fourier Transform). They cannot be directly

applied to images.

Incidentally, images are mainly characterized by two types of element, namely contour and

texture:

- Contours are abrupt change of important characteristics from an area A to an area

B of a scene (average value, texture description). The edges can be locally

considered as 1D signals;

- Textures are spatial variation of the 2D signal apart its local mean value;

- Motion of the objects in a scene involves temporal modifications in the successive

frames of a video.

Now you have seen a general overview of images and digital image processing. In the

next part of this chapter, we will look at methods for representing images (digitizing and

encoding), which must be used in order to carry out digital processing. We will also see some

concrete examples of results relating to the domains of application that we explored earlier.

2005 D. BARBA 1

Examples of Image Processing

Images and Videos Analysis

Chapter 1

MULTIMEDIA SIGNAL PROCESSING

 The four major domains of application for image processing have been globally

presented: what are the issues? what are the objectives? what methods to use? and which

tools? We will now look more closely at some concrete applications derived from these

different domains.

2005 D. BARBA 2

Image and video analysis

• Objectives

– Objects detection and extraction (segmentation)

Objects of interest

– Pattern recognition

Object classification, object identification

– Scene analysis and interpretation

• Relational

• Quantitative description

• Qualitative description

The first domain that interests us is image analysis. This covers a large number of

potential applications and is probably the domain for which there is the greatest variety of

examples (medical analysis, classification of chromosomes, automatic reading, signature

verification, remote sensing, segmentation and classification of geographical areas, etc.).

We can however suggest a typical image analysis cycle, which consists of

� Detecting the different objects present in a scene and extracting them

(segmentation, slicing into areas).

� Characterizing the objects in the picture (size, location, etc.).

� Recognizing objects and classifying them.

� Analyzing and interpreting the scene according to the previous results. The

scene could for example be described quantitatively and/or qualitatively.

Let us remember though that the applications are quite varied and that the global approach

given here may sometimes require changes in the stages of processing, according to the

difficulties encountered.

The example presented in the image above highlights detection and extraction of a

delivery address. The application would be used for automatic sorting whose nature would

depend on the postal objects and how they were posted. Most industrialized nations use

automatic sorting and obstacles vary from one country to another due to differences that exist

between postal codes (among other factors); are the postcodes numbers or other characters ?

what is their size ? etc.

Various processing algorithms exist for this. We can for example notice that the

characters of the text form a regular texture containing vertical contours arranged

horizontally. By applying directional filters, it is possible to highlight the pixels of the image

that are linked to text. We could for example carry out binarization followed by post-

processing so we can extract the rectangles surrounding text boxes. Once the text is separated

from the image, we could analyze the neighboring components to find those that correspond

to text boxes. Once the global processing of the image was carried out, you would then need

to apply local processes and consider various constraints (for example, geometrical) to avoid

errors. These different operations are described in the next chapters.

2005 D. BARBA 3

Address block detection and extraction

The image above is also the result of an analyzing process. The objective is once again

to detect and extract from the image the text boxes linked to the recipient’s address. However,

the image above presents new difficulties; the background is much less even than the one

given previously, as it is made up of text. We must also be able to distinguish, from all the

overlapping characters, which ones are linked to the "sender’s address block" and which are

linked to the rest of the image. However the background text and the address text are

perpendicular to each other. It would seem possible to segment the image by applying adapted

directional filters. Then we could take up the Characterization – Recognition – Interpretation

chain from an image analysis process so we could obtain, as on the picture shown, exact

detection of the recipient’s address block.

2005 D. BARBA 1

Address block detection and extraction

2005 D. BARBA 5

Extracting and reading the amount

written on a cheque

 The last example presented for image analysis concerns extracting and reading the

amount written on a cheque. This is particularly important, considering the industrial and

economic potential. Many publications and methods exist concerning this subject, however

potential users of this kind of automatic recognition seem to want more reliable results.

Because of this, the problem remains open-ended. With this technology, figures and

handwritten letters need to be recognized in an environment whose complexity demands the

use of appropriate techniques. Apart from the enormous variation in how individuals may

form characters, other problems arise such as the non-standardized format of cheques (field

position, type of background) and overlapping of the items that make up the amount (figures,

baseline, decimal separator).

The main products or prototypes available in France come from SRTP (the post office) with

Dassault AT (cheque processing automat that reads only the numerical amount), Matra (MSI)

and their LireCheques (cheque reader) product and finally the product called InterCheque

from a2ia that can be found in some banks (Société Générale, Banque Populaire) whose

recognition rate approaches 70% thanks to a technology based on neural networks and

Markov models.

2005 D. BARBA 6

Image and Video Coding

with Data Compression

Examples of Image Processing

After these few examples of image analysis applications, we are going to look now at

applications linked to image encoding for data compression.

2005 D. BARBA 7

Context

• Extension of digital techniques to many domains of

information processing , information capture , storage and

transmission

only one way to store, process and transmit information units

independently of their meaning is preferred

• Audio-visual signals have specific properties which require

dedicated techniques for representing efficiently them:

� data are representation of analog signals

sampling + quantization

� large amount of data to represent a small part of the original

source of information (e.g. 1s of audio/video)

As this was mentioned in the presentation, the problem posed here is the need to

greatly reduce the quantity of binary information elements in order to represent images

destined for storage or transmission. Although the images are quite varied, meaning that the

information they contain may all be very different (color, light, objects), it is still preferable to

put in place a unique procedure for information compression encoding, which can be applied

to each image, independent of its characteristics.

Furthermore, audiovisual signals are analog (continuous) signals whose representation

requires a very important quantity of data (for example for a single second of video footage,

you need to be able to store a sequence of 25 images). The effective representation of such

signals needs adequate methods to be used.

The binary representation of an analog signal is only possible if the signal has undergone

sampling (classically temporal, spatial, etc.) so that one can work on a finite number of

samples from this signal. The amplitudes linked to an analog signal also stretch over a

continuous interval that will need to be discretized according to different criteria: this is signal

quantization. These two stages are presented here briefly for a 1D signal but they will be

examined in more detail in the sequel to this module for a 2D image signal.

The figure above represents a ramp type signal before and after sampling. The sampling

frequency equals 0.2Hz (
5
1 s

-1
). The amplitude of this signal varies continuously over the

interval [0, 100], so a quantification will be necessary.

The figure above represents an example of quantification: if a sample of the signal has an

amplitude included in the interval [10k ; 10(k+1)[, « k » being a natural integer, the amplitude

value would be brought by quantification to 10k+5.

After quantization, the data have a discrete representation that it will be possible to encode.

Typically we would use binary encoding.

2005 D. BARBA 9

• Data size requirements

– One Teletext page = 25 rows × 40 char => 1 Kbyte

– One A4 text page = 50 rows × 80 char => 4 Kbytes

– One second of telephone (300 Hz - 3400 Hz) => 8 Kbytes

– One second of stereo hi-fi audio => 176.4 Kbytes

– One A4 fax => 1.1 Mbytes

– One image (color-slide quality: 2000 × 3000) => 18 Mbytes

– one second of TV program (video signal) => 21 Mbytes

– one second of HDTV program => 230 Mbytes

Need data compression

Large amount of data for representing

audio-visual information

 To illustrate the problem that a large quantity of data are required to represent a little

information from an image signal, the document above gives an indication of the data sizes

required to store and transmit different images, that we regularly find in our environment.

These use Anglo-Saxon units, so remember that 1 byte = 1 octet = 8 bits.

For example, a single faxed sheet of A4 paper needs a capacity of 1.1 Mb to transmit the basic

image. These different examples show how important it is to make data compression

encoding before sending or storing an image.

2005 D. BARBA 10

Contex

• Need to mix in the same document different types of
information

– Text (common ; intrinsically structured ; semantic level)

– Data tables (common ; intrinsically structured)

– Graphics (vectorized data ; structured information)

– Audio (list of many temporal samples ; low level representation
(non structural & non semantic))

– Image (list of scalar/vector samples issue from a scanning of 2D
plane ; low level representation (non structural & non semantic))

– Video (set of Image data along the time axis; same properties as
Image data)

 Apart from the fact that a large quantity of data are required to represent a little

information from an image signal, the representation of this signal is also made difficult but

the very nature of the image signal. This signal mixes many and varied types of information.

Consider that an image may contain text boxes, data tables, pictures and so on.

The "Compression size/Quality" compromise also directly depends on the image content. If

we consider for example a geographical map accompanied by a legend, it is not possible to

simply recognize shapes and the borders of the various continents, seas and oceans, once

decoding has occurred. The writing must not be too deteriorated so that legends and names on

the map can still be easily read by any user.

2005 D. BARBA 8

Main aspects of image compression

• Type of images to compress ? which services ?

• Image quality:

– lossless image coding

– or lossy image coding

in that case: with or without visible distortions?

• Compression rate / Quality

• Codec complexity : coder end , decoder end

• Error sensitivity (error robustness):

effects of transmission errors on the decoded image

• Fixed or variable compression rate:

⇒⇒⇒⇒ transmission requirements

 Before applying data compression encoding to an image, one must ask several, often

trivial question but which have an important influence on the results obtained after

compression:

- What type of image are we dealing with? What will it be used for?

- Do you need an exact encoding (reversible but highly constrained which gives a

low compression rate)? Otherwise, will any deterioration be visible to the naked

eye (here again, the compression rate is affected)?

- The compression rate must be as strong as possible to save sufficient storage space

and transmission time as possible, but as that affects the quality, what type of

balance are we striving for?

- A rise in the compression rate increases the decoder complexity and consequently

the calculation cost for the system. Here again a suitable compromise must be

found depending on the intended usage.

- How well does it need to stand up to errors? Transmission errors may have strong,

direct repercussions on the decoded image.

- Will the compression rate be fixed or variable? What will the transmission

conditions be like?

When it comes to the crunch, the required usage of the encoding is as important as the

encoding itself. Before starting, you must define the compression rate and depending on your

objectives, choose the compression size/quality ratio that you want to obtain.

2005 D. BARBA 11

�Very « hot » applications
· huge volume of information

· wide spread of applications and services

digital photography (MMDB)

�

HDTV

�Multiple dependences
· which images (≈ types & services)

· which resolution, frame rate/s,

· which quality required (acceptance level)

· which communication network

�Multiple requirement scalabilities
(multiscale, multiple qualities ...)

� Other functionalities than pure coding: object manipulation,...

In Summary

To sum up, what we have put forward leads to the conclusion that setting up image

compression encoding is a complex procedure. On the one hand, you must consider a very

large volume of information and a wide range of applications and services. On the other hand,

the encoding itself will depend on a number of parameters: the image being processed (type,

content, usage), its resolution, the quality required for the intended usage and the accepted

amount of deterioration, the transmission network to be used, and so on. In addition to these

difficulties, there may be complexity, linked to features other than the encoding itself (object

manipulation, etc.).

The next section presents the case of encoding for a high definition image; by its nature this

type of image creates a constraint that has a direct effect on the compression complexity.

2005 D. BARBA 12

Example of HD image: Image Bike
(decoded at 3 scales from the same encoding process)

(1024 × 1280)

(512 × 640)

(original size: 2048 × 2560)

The figure above presents a high-definition (HD) image, "Bike" which, after compression

encoding, has been decoded to 3 resolution levels and different sizes, but using the same

process. The presentation is in a pyramid form, from the highest resolution (to the left of the

picture) to the finest (on the right). The image with the highest resolution appears to be sharp,

and colors and details are clearly rendered. Deterioration does not seem to be perceptible by

the human eye in this case. However, for an HD image such as "Bike" with a 2048×2560
resolution, new compression encoding problems appear.

Note: be careful in relation to the representation given on the illustration above, because if the

display does not keep the same resolution as the original, there may be under-sampling.

2005 D. BARBA 13

• High data compression rate but quality saving !

for storage and for transmission (reduced bandwidth)

• Others requirements

• multiple adaptations (transmission rate, scalability, errors
robustness, packetization)

• access to partial contents, content description, …

JPEG2000, MPEG4, MPEG7 standards

Problems

• Digitalization of audiovisual signals

– specific problems with HD images / video

• image sensors (multi-spectral sensors, resolution, sensitivity,

high speed luminance capture)

• quantization (high precision for audio / some imagery

systems, high speed conversion)

When we digitize audiovisual signals, problems specific to HD image appear:

- the type of capturing device used (multi-spectral types, resolution, sensitivity, high

lighting speed capture, etc.)

- The way in which quantification is chosen.

Furthermore, we are seeking to attain high compression rates, considering the intended

applications. However, as this is a high definition image, we wish to keep a high degree of

quality. The compromise between compression rate and quality is limited. Finally, by taking

into consideration other constraints, such as the necessity to adapt the encoding (according to

error resilience, transmission mode, etc.), it has become necessary to create compression

standards that may meet the different constraints caused by these problems and which we can

apply to images independent of their nature. The most common standards for pictures and

video are JPEG, GIF, JPEG2000, and MPEG4.

The next section presents an illustration of different results obtained for a picture called

"Mandrill" which was encoded in JPEG with different parameters and compression rates.

2005 D. BARBA 14

Example of JPEG coding : original of Mandrill

Original:

512 × 512

⇒ 24 bpp

⇒ 768 Ko

Above is the original "Mandrill" picture with a size of 512×512 pixels. A pixel is coded on 24
bits (three times 8 bits because the initial representation is in full RGB colour, so there are 2

24

possible levels for each pixel). The image is thus represented by a volume of 512×512×24 =
768 Ko. We are going to put this image through a series of JPEG encodings, with different

parameters, to compare the visual quality of the results and the compression rates obtained.

2005 D. BARBA 15

Example of JPEG coding (q = 5 ; 9 Ko)

τC =768/9
≈ 85

Above is the "Mandrill" picture that has undergone a JPEG encoding. Quantization was

carried out with a low quality factor q (q=5). The compression gain is relatively high. The size

of the data describing the image is only 9Kb. There is a high compression rate τC, worth
768/9=85. However, the image has lost much of its visual quality. Colors and shapes are

rougher than on the original image and a blockiness effect quite clearly appears over the

whole image (blocks of pixels are represented by practically the same color).

2005 D. BARBA 16

Example of JPEG coding (q = 10 ; 17 Ko)

τC =768/17
≈ 45

Another example of a result with a higher quality factor, although it remains quite low (q=10).

The compression rate is lower than the previous example (τC = 45). The image quality has

improved and the blockiness effect is less apparent, although it can still be seen on the vivid

reds and blues of the baboon’s face. The range of colors is lower than the original image, but

it gives a better representation of the monkey’s fur than the previous encoding. Note that by

doubling the quality factor q, the compression rate is divided by 1.88, which is nearly half.

2005 D. BARBA 17

Example of JPEG coding (q = 25 ; 32 Ko)

τC =768/32

≈ 24

2005 D. BARBA 18

Example of JPEG coding (q = 35 ; 40 Ko)

τC =768/40

≈ 19.2

Two more results obtained by giving precedence to image quality rather than the compression

rate. However, this time, the compression rate was divided by only 1.25. The evolution of the

compression rate according to the quantization is generally not a linear function.

2005 D. BARBA 20

Example of JPEG coding (q = 75 ; 76 Ko)

τC =768/76
≈ 10.1

Finally, the image above presents a result where the image quality is paramount over the

compression. The number of bits required to store the encoded image is 10 less than what is

required to store the original image. It is however difficult for the human eye to detect the loss

of picture quality: it is hard to differentiate between this and the original image in terms of the

color range and the sharpness of colors and textures.

 Here we have presented image processing under its different aspects. It was created

from new requirements made by information technology, and in turn uses those same

technologies to ensure its rapid development. With its expansion, four wide domains of

application have appeared: restoration, encoding, analysis and image synthesis.

In this course, the domains of analysis and encoding have been accompanied by examples of

concrete applications, in order to give an initial view of the possibilities and results offered by

the various image processing.

However, in the real world, the images that surround us cannot generally be processed

directly and they are not digital. They need to be digitized in order to be processed with

adapted algorithms and systems. This digitizing stage will be looked at in the next resource

(Image digitization).

Exercise Chapter 1– Introduction to Matlab

MATLAB is a high-level scientific calculation language and an interactive

environment for developing algorithms, visualizing and analyzing date or carrying out

numerical calculations.

When you start Matlab, by default you find yourself with a console, a workspace and a

command history. An editor is also available by using a simple edit command.

ACTIONACTIONACTIONACTION: Start Matlab and add your own working folder paths to the path list in the path

browser (don’t forget the subfolders). The pwd, cd, ls Unix commands are available.

Note: when a user runs a command in the console, Matlab will go looking in the folder that

you indicated in the path browser; if a function or a script matches that command, the first

one found will be the one used (so take care with the folder order and the names of scripts

and functions).

Exercise 1 – Operators

Between each exercise, we recommend that you use the clear and close all commands so that

you can empty the workspace and close all the figures.

1.1 – Enter the command a=[1 4 5 ;4 8 9], what does this command correspond to?

In the console, enter the a=rand(5) command. Then enter the help rand command to get a

description of the operation carried out by the rand function. Finally, enter the command:

a=rand(5) followed by a semi-colon « ; »

What difference can we observe in the console with the a=rand(5) command? Deduce from t

his the role of the « ; »in Matlab.

1.2 – In Matlab, the « : » operator is very useful. It can be used, among other things, to swap

elements from a row or a column of a matrix.

A word of caution: the index 0 does not exist in Matlab. the first element of a matrix is

accessed by an index of 1. For example array(1,1) for images accesses the value of the pixel

(1
st
 row, 1

st
 column). The first index is for the rows, the second index for the columns.

To fully understand these concepts, try the commands:

- a(2,1)

- a(1:3,1)

- a(:,2)

- a(1, :)

- a([1 4], :)

- a(1 :2 :5, :) (the 1:2:5 command sweeps the interval [1,5] by steps of 2)

Be careful however not to put a « ; » at the end of a row to visualize the results obtained in the

console.

1.3 – Matlab is an interesting tool for matrix calculations. The various classical matrix

operations (addition, multiplication, eigenvalues etc.) are there of course but there are also

element by element operations that are very useful in image processing; these are available

through a specific operator (for example: « .* », « ./ »).
Enter the following commands (without « ; » at the end of the line to see the results):

- a= [0 0 0; 1 1 1; 2 2 2]

- b=a+4

- c=a*b

- e=a.*b

Explain the difference between « c » and « e ».

ACTION:ACTION:ACTION:ACTION: Create a matrix A sized 4×4 using the method of your choice (use rand or enter

the items one by one). How can you access:

- the first row of A?

- the fourth column of A?

- the first three items of the fourth row in A?

Exercise 2 – Display

Matlab also offers a wide range of diverse and practical display possibilities. For example,

you can plot function on a logarithmic scale or view the values of a matrix as an image.

2.1 – A vector can be displayed using the plot command. Enter the help plot command to

obtain more information about this function and on functions with similar properties

(subplot, semilogx, etc.).

Try out the following commands:

- x=1:3:10

- plot(x) then plot(x,’r’)

- y=rand(4,1), then plot(y), then plot(x,y,’g’). Interpret the difference between these

two commands.

The plot function is very useful for obtaining for example the curves of different plane

functions.

2.2 – Displaying a matrix on the other hand corresponds to displaying an image. Each item (n,

m) in the matrix is considered as having the value of the pixel (n, m) with which it is

associated. Check this by entering the following commands:

- a=rand(10)*10 ; (so that the elements are not limited to [0,1])

- a=exp(a) ; (to obtain larger spans between the items of vector a)

- image(a)

Images can be displayed with the image, imagesc, and imshow functions. Try zooming with

the mouse; what kind of interpolation is used?

Exercise 3 – Writing scripts

The classic extension of a MATLAB file is .m. We can find two types of .m files: function

files (which we will look at later in the chapter) and script files, which are a set of commands

that can follow on from each other. Using script files is a way of saving your commands from

one Matlab session to the next. To open a script file:

- either type the edit command;

- or click: file ⇒ new ⇒ M-file;
- or click the "blank page" icon.

To run a script:

- either run a file_name command in the command window (without the .m

extension), making sure that the path list is consistent.

- or select lines from the .m file in the edit window and press the F9 key (a practical

way of running only part of a script).

ACTIONACTIONACTIONACTION: Enter all the commands from the section 1.2 into a script and save it (for

example: test.m). Run the script in the console and using the F9 key.

Exercise 4 – Data types

During this series of exercises, we are going to be using the Image Processing toolbox. This

contains a large number of existing functions (do not hesitate to look in the help using the

help or helpwin commands), as well as demonstrations. Sometimes we will use our own

functions and sometimes we will be using those from the toolbox. However, you need to be

careful with the data types. Classically and by default in Matlab, everything is a matrix of

double, but most of the functions in the Image Processing toolbox work with the uint8 type to

represent pixel value. You will need to convert the type each time this proves necessary (you

can easily see the type of your data in the workspace).

ACTIONACTIONACTIONACTION: From the image base, download the ‘FRUIT_LUMI’ image into your working

folder. Read and display the image file respectively using the commands imread and
imshow:

fruit = imread(‘FRUIT_LUMI.bmp’);

imshow(fruit);

By consulting the workspace, look at the size and data type. So as to display a sub-image that

corresponds to the top left corner of 64×64 pixels, test this command:
imshow(fruit(1:64,1:64));

The matrix fruit now represents the ‘FRUIT_LUMI’ image. Try adding this matrix directly to

any number (e.g.: fruit+8). The console returns an error message:

Function ’+’ is not defined for values of class ’uint8’

This is because the ‘+’ operator is defined only for "double" type elements. To carry out this

operation, you will need to force the "double" type for the elements in the matrix by typing:

double(fruit). Try again after this conversion.

Exercise 5 – Writing your functions

Use the function files as you would in any classical imperative programming situation. These

are also .m files. To use a function, you must call it with call parameters either in a script or in

another function.

ACTIONACTIONACTIONACTION: Use the template.m file to write your own max_min function that will find the

difference between the largest and smallest element in a matrix. You can use the Matlab max

and min functions. Be careful to save the name of your function (e.g. max_min) in a file of

the same name (example max_min.m).

Contents of the template.m file:

http://webdav-noauth.unit-c.fr/files/perso/ythomas/cours_unit/images/FRUIT_LUMI.BMP

function[out1, out2] = template(arg1, arg2)

%--

%

% Description:

%

% Input:

% arg1:

% arg2:

%

% Output:

% out1:

% out2:

%

% Date:

% Modif:

%---

Note: You can use a function directly in the command window (providing that you use the

correct paths) or within a script or another function.

Solution to the exercise for the introduction to Matlab

 The first objective of this exercise is to make yo u familiar with
Matlab if you have never used it before and to remi nd current users of its
basic functions.

1 – Operators

1.2 –

The command a=[1 4 5 ;4 8 9] returns the matrix 2 ×3:

981
541

.

The command a=rand(5) returns a matrix 5 ×5 made up of random values between
0 and 1.
Finally, in Matlab, the operator « ; » is used when you do not want to
display a command’s result in the console. This op erator is useful, for
example when you work with large matrices (such as images), which are
sometimes long to display and often not very repres entative of the data.

1.3 –

Working with the operator « : ».

1.4 –

In Matlab There are two types of matrix operations that use the « * » and
« / » operators:

- matrix multiplication and division,
- element by element multiplication and division (joi nt use with the

operator « . ».

The command c=a*b will perform a matrix multiplication of matrix « a » by

matrix « b » : ∑=
k

kjikij bac . .

The command e=a.*b will perform an element by element multiplication of

matrix « a » by matrix « b » : ijijij bae .= . The matrices have to be the same
size.

ACTION:

Create a matrix A with a size of 4 ×4 by directly entering these
coefficients one by one: A=[1 2 3 4;5 6 7 8;9 10 11 12;13 14 15 16]

=

 16 151413
1211109
8765
4321

A

The 1st row of A is given by the command: A(1,:).
The 4th column of A is given by the command: A(:,4).
The first 3 elements of the 4th row of A are given by the command:
A(4,1:3).

2 – Display

2.1 –

The command y=rand(4,1) returns a vector of 4 elements. By typing plot(y),
a curve appears. This curve represents the evolutio n of the vector « y »
depending on the indices of the vector elements. Ho wever it is possible to
modify the abscissas by creating an abscissa vector « x » in a given unit
of the same size as the vector « y »: you plot y ac cording to x by the
command plot(x,y).

2.2 –

Here is an example of the result obtained by typing the commands indicated
with a display by image(a).

The 10 ×10 sized matrix is represented here by 10 ×10 square pixels of
different colors. The colors correspond to the valu es of the various
elements in the matrix.
The zoom uses a zero-order interpolation of a neare st neighbor type. This
means that it is a simple imitation of an image pix el by several pixels on
the display screen.
Let’s consider for example a screen of 5 ×5 pixels, on which a 5 ×5 image is
represented. The screen pixels correspond to the re presented grid.

The figure below presents a ×2 zoom around the red pixel located in the
centre in the case of a nearest neighbor interpolat ion.

The red pixel is simply « duplicated » to twice its height and width on the
screen pixels.

3 – Writing scripts

Working on a script.

4 – Data types

Working with uint8 type data.

5 – Writing your functions

The Matlab « max » function (and respectively the « min » function) given

an M ×N matrix as input, returns a vector of size N of wh ich each element e k
is the maximum element (and for min the minimum element) of the matrix
column k.

Here is the solution function:

function [out] = max_min(A)

%--
% Description: difference between the max and min
% elements of a matrix A corresponding to a monochr ome
% image
%
% Input:
% A: the matrix on which the search occurs
%
%
% Output:
% out: the value of the difference
%---

out = max(max(A))-min(min(A));

How is composed a grayscale image?

Grayscale image Mandrill (512 ×

512 pixels)

Zoom of a 50 ×

50 pixel bloc
⇒ Zoom for visualizing the luminance
levels (256 possible levels)

Color image Mandrill (512 ×

512)

How is composed a color image?

50 ×

50 bloc

The RGB
Planes

On a screen, the color is based on additive synthesis of the three
components: RED - GREEN - BLUE

Note : printing for full color documents by subtractive synthesis,
(components : Yellow, Cyan, Magenta + Black).

Exercise Chapter 1 – Breaking up a color image

A color image is made up of 3 components. In chapter 1 we have seen 2 color spaces

to represent this: a decomposition using Red, Green and Blue and a decomposition using

Luminance, Chrominance1 and Chrominance2 (there are also others). We are going to study

at the Red Green Blue color space representation in Matlab.

Retrieve the CLOWN and CLOWN_LUMI images. Create a folder and put the images in it.

Update the path lists in the path browser.

1 – Difference between a grayscale image and a color image

Create two variables « im1 » and « im2 » in which you are going to load respectively the

CLOWN and CLOWN_LUMI images (using the imread function). Visualize these two images

using the image function. Check their type and the size of the associated data; what

differences do you notice?

2 – Viewing the Red Green Blue planes of a color image

The variable « im1 » is a three-dimensional table of a N×M×P type. In other words, for a
color image, N×M represent the number of pixels in the image (N points per row, M rows)

and P represents the Red Green Blue planes. For a color image, we will have P=3 and for a

grayscale image P=1.

Create 3 new variables imr, img, and imb in which you should have respectively the red

component (P = 1), the green component (P = 2) and the blue component (P = 3) of the

CLOWN image. Visualize these three planes.

Important note: To view the 3 RGB planes, which are the contents of the variables imr, img,

and imb, you will need an appropriate LUT (LUTs, or Look-up Tables are presented in

chapter 2).

Three LUT have been created and placed for this purpose in the files called lutr.m, lutg.m, and

lutb.m for viewing, respectively, the red plane, the blue plane and the green plane. Put the

lutr.m, lutg.m, and lutb.m files into your working folder. Once you have displayed one of the

three planes of the CLOWN image, taking care to select the window in which this plane

appears (the active window for Matlab), run the lutr command in the console for the red

plane, lutg for the green plane and lutb for the blue plane.

http://webdav-noauth.unit-c.fr/files/perso/ythomas/cours_unit/images/CLOWN.BMP
http://webdav-noauth.unit-c.fr/files/perso/ythomas/cours_unit/images/CLOWN_LUMI.BMP
http://webdav-noauth.unit-c.fr/files/perso/ythomas/cours_unit/fichiers_matlab/lutr.m
http://webdav-noauth.unit-c.fr/files/perso/ythomas/cours_unit/fichiers_matlab/lutg.m
http://webdav-noauth.unit-c.fr/files/perso/ythomas/cours_unit/fichiers_matlab/lutb.m

Solution to the exercise on breaking up a color image

 The aim of this exercise is to show you on a concr ete example of how
to carry out Red Green Blue (RGB) additive synthesi s on a color image.
Matlab uses this RGB decomposition for displaying c olors so it is an ideal
tool for viewing the different planes.

1 – Difference between a color image and a grayscal e image

To acquire the CLOWN and CLOWN_LUMI images in the variables im1 and im2 you
must type these commands:
im1=imread(‘CLOWN.BMP’) ;
im2=imread(‘CLOWN_LUMI.BMP’) ;

To display them, type:
image(im1) ;
image(im2) ;

Looking at the workspace, you can see that im1 (color image) is a three-

dimensional table (512 ×512×3) while im2 (monochrome image) has only two

dimensions (512 ×512). The size in bytes of im1 (786432 bytes) is also three
times larger than that of im2 (262144 bytes).
The first two dimensions of tables im1 and im2 correspond to the number of
points per row and the number of rows for the image . The image CLOWN,

whether it is displayed in scales of gray or in col or, is an 512 ×512 image,
so it is normal that the first two dimensions are i dentical for the
variables im1 et im2. The third dimension of im1 indicates that we are on
the Red, Green or Blue plane. This dimension is thu s equal to 3. For a
grayscale image, represented only by scales of gray varying over [0,255],
this component is worth 1 and so is not indicated i n the workspace. We
conclude that a color image corresponds to the supe rposition of three
single color RGB images.

2 – Visualizing the Red Green Blue planes of a colo r image

Here is the script for acquiring the three RGB plan es in the variables imr,
img, and imb:

imr=im1(:,:,1); % Red plane
img=im1(:,:,2); % Green plane
imb=im1(:,:,3); % Blue plane

Once you have imported the lutr, lutb, and lutg files into your working
folder, here are the scripts for displaying the thr ee planes of the image:

% Displaying the Red plane
figure % Create a new window for displaying the image
image(imr);
lutr;

% Displaying the Green plane
figure
image(img);
lutg;

% Displaying the Blue plane
figure
image(imb);
lutb;

Here are the obtained results:

From an analog signal to a digital signal:
3 steps

Digitalization of a temporal signal (1-D)

Continuous signal (reference)

Step 1

Sampled signal

Quantized signal (4 levels)

Step 3

Step 2

Coding (4 levels ⇒ 2bits)

Quantization : the continuous signal amplitude is represented by a set of discrete
values (reconstruction levels).

Sampling : the original temporal signal is represented as a set of finite values. The
values are sampled with the sampling period Te.

Coding : the binary coding of the reconstruction levels uses k bits (⇒ 2k possible
levels).

From an analog signal to a digital signal:
3 steps

IN CASE OF IMAGES

The images are 2-D signals. The sampling is performed along the spatial dimensions
« x » and « y » (not along the time axis as previously).

Typically the number of luminance reconstruction levels is 256, each level is thus
coded by 8 bits (natural binary coding).

2005 D. BARBA 1

Image digitalization

Sampling and Quantization

Chapter 1

MULTIMEDIA SIGNAL PROCESSING

2005 D. BARBA 2

Sampling and Quantization

• Sampling
- Sample the value of the image at the nodes of a

regular grid on the image plane.

- A pixel (picture element) at (m, n) is the image

intensity value at grid point indexed by the

integer coordinate (m, n)

• Quantization
- Is a process of transforming a real valued

sampled image to one taking only a finite number

of distinct values.

- Each sampled value in a 256-level grayscale

image is represented by 8 bits.

• Computers handle discrete data.

255 (white)

0 (black)

In the previous resource (Image processing – Examples of applications) we briefly mentioned

on the fact that digitalization implies a double discretization:

- Firstly from the domain of the image definition: the 2D spatial domain for still images

(respectively the 2D spatial domain and time for moving images): this is sampling.

- Secondly from the image signal amplitude: the luminance signal in the case of

monochrome images, the three color signals in the case of color images (representing

“Red Green Blue” (RGB) or "Luminance, Chromatic1, Chromatic2": Y, Cr, Cb): this

is quantization.

We can only then speak of digital (or digitalized) images once this double discretization has

been carried out, in space and in amplitude. The basic (or canonical) representation of an

image corresponds to a 2D table, in which each element corresponds to a pixel. For a

monochrome image, each pixel is encoded on 8 bits, for example, and in this way could take

256 different values (effect of the quantization). In the case of a color image, the pixel will

have three components that will represent the “Red Green Blue” (RGB) components or

"Luminance, Chromatic1, Chromatic2" (YCrCb)) according to the chosen model.

Note: if R, G, B each take their value from [0, 255], and Y too, the two chromatic components

Cr and Cb take their initial value from [-128, +127]. In practice, these are encoded by adding

an offset of 128 so they have both a range dynamic of [0, 255].

2005 D. BARBA 3

A Typical Image Processing Scenario

Recall: What is an Image?

– A function I(x,y) over two spatial coordinates of a plane

– To obtain digital data for digital processing:

• Sampling (spatially) and Quantizing

the luminance values

• Can be done by single chip

i.e. Charge-coupled Device (capteur CCD)

Typical image processing scenario

The figure above shows the complete chain used to carry out any type of image processing:

- The image is represented by a function of two continuous variables, these variables

corresponding to spatial coordinates (x, y).

- The first function is Sampling: we sample the continuous image signal (discretization

of the spatial coordinates).

- The result is then injected into the Quantization function: for a monochrome image,

we often choose 256 luminance levels.

- The image is now digitalized, so we can apply the required image processing (cf.

Processing), which could be binarization, contrast enhancement, etc.

- The processed digital image is finally sent to a digital-to-analog converter (DAC) to

obtain a signal that can be displayed on a monitor.

The typical functional chain for image processing involves an operation for digitalizing the

images that we will then process. This operation is sampling followed by quantization. These

two notions were reviewed in connection with signal processing and electronics. However the

design and achievement of these two stages in imaging are quite different because images are

2D spatial signals and their representation for color images requires us to consider to

digitalize the three components.

Two important remarks:

1 – The input signal I(x, y) is a 2D image. In images, the axis (Ox) and (Oy) are represented

and oriented as shown below:

The (Oy) axis is directed from the top of the image towards the bottom.

2 – Once these two axis are discrete, we obtain « m » rows and « n » columns:

In image processing, we need to speak of an image I(m, n) and not I(n, m). The coordinate

order is modified because « m » corresponds to the discretization according to (Oy) and « n »

according to (Ox).

2005 D. BARBA 4

Recall: 1-D Sampling

• Time domain

- Multiply continuous-time signal with periodic impulse train

• Frequency domain
- Duality: sampling in one domain � tiling in another domain

� the Fourier Transform of an impulse train is an impulse train (proper

scaling & stretching)

Before moving on to sampling a 2D signal, we should recall some results about 1D signal

sampling. The most widespread type of sampling in electronics and signal processing is time-

based sampling. The figure above presents the various results issued by such processing in the

time and frequency domains.

Note: ω=2πf , with ω : pulsation in rad.s-1 et f : temporal frequency in Hz

� In the time domain: starting from a signal « x » depending on time, you must choose a

sampling period « T ». The sampled signal xS(t) will thus be represented by its values

at instants t = T, t = 2T, t = 3T, … Practically, to create such a sampling, you must

carry out the product of convolution of the analog signal x(t) with a series of impulses

p(t). These impulses correspond to the sum of the Dirac pulse (Dirac delta function) at

time kT, k being an integer.

� In the frequency domain: there is a duality between the time domain and the frequency

domain. The fact of sampling a signal in one of these domains causes the periodization

of the same signal in the other domain. Here X(ω) (resp. P(ω)) represents the

frequency spectrum of x(t) (resp. p(t)). The sampling period T in the time domain has

thus created the periodization (period 1/T) of the spectrum in the frequency domain

(see the representation of XS(ω)).

This duality between the two domains can create aliasing effects due to spectrum overlapping,

so certain constraints must be met.

The problems caused by the sampling of two-dimensional signals are most likely

similar to those of one-dimensional signals. The Nyquist criterion is applied in the same way.

However, an interpretation in a two-dimensional space is necessary to better understand the

phenomena linked to sampling, such as the effects on the sampling pattern geometry.

The figure above represents an example using a Fourier transform from a 2D limited

bandwidth function (image Barbara). In this case we can work with a bounded spectrum. The

spectrum spreads over a spatial frequency domain defined by two basis vectors.

2005 D. BARBA 7

Extension to 2-D sampling (1)

• Bandlimited 2-D signal

- its Fourier transform is zero outside a bounded region is

spatial frequency domain: |νX|< νX0 et | νY|< νY0

Example : the image Barbara and its spectrum

2005 D. BARBA 8

Extension to 2-D sampling (2)

• 2-D Comb function

• Sampling vs. Replication (tiling)
- Nyquist rates (2.νX0 et 2. νY0) and Aliasing

)y.my,x.nx()y,x;y,x(comb
n,m

∆−∆−δ=∆∆− ∑
y.x/)y/,x/;,(comb),(COMBFT YXYX ∆∆∆∆νν=νν⇒− 11

The variations according to
→
x (∆x) and the variations according to

→
y (∆y) are going to

define the plane on which the 2D image is located. The sampling structure is regular (figure

on the left) so the arrangement of sampled points (pixels) is regular in the plane (x, y). The

position of the point at coordinates (m, n) is given by: n∆x + m∆y.

In the frequency domain, points are defined by their "frequential" coordinates νX et νY. From

a function f(x, y), to which we associate the amplitude spectrum F(νX, νY,), we will obtain

after sampling:

� ∑ ∑ ∆−∆−δ=
m n

e)y.my,x.nx().y,x(f)y,x(f

� ∑∑ ν∆−νν∆−ν

∆∆=νν

m n

yyxxyxe).m,.n(F
y.x

),(F 1

For a bounded spectrum image signal, we can reconstruct the original (non-sampled) image,

from the ideally sampled image if the original signal spectra do not overlap (central figure in

opposition with the image on the right). To do this, we use an interpolator R of constant

spatial frequential gain (spatial frequencies), equal to ∆x∆y in the F domain and zero outside

of F, so that this has no overlapping with any of the translates of F. We then have the ideal

two-dimensional linear interpolator: the Nyquist spatial interpolation filter.

2005 D. BARBA 9

Sampling Lattice in Color Images and Videos

4 : 4 : 4 Sampling Structure 4 : 2 : 0 Sampling Structure

Orthogonal sampling structures

 The figure above presents two common structures for orthogonal sampling of color

images:

� A 4 : 4 : 4 structure: For each pixel, we have a luminance component and two

chromatic components, Cr and Cb. In this case there is no sub-sampling of the

chromatic components.

� A 4 : 2 : 0 structure: For each pixel, we have a luminance component (Y) but the two

chromatic components, Cr and Cb are only for a group of 2×2 luminance pixels. The

chromatic resolution is divided by a 2 factor along the two spatial dimensions. This

format (used in DVDs) reduces the vertical and horizontal resolutions.

For these sampling structures, we transformed the RGB representation of the image into the

YCrCb representation. The reduction in the spatial sampling frequency of the two chromatic

components is made possible by the fact that, in natural images, the two chromatic

components have a spatial frequency bandwidth much narrower than that of the luminance

component.

2005 D. BARBA 10

Examples of image Sampling

(with zero-order interpolator)

Original Sampling

4 × 4 downsampling

16 × 16 downsampling
Image Lena

In this figure, we have represented the image "Lena" sampled with two different

sampling structures. The image on the left is the reference image (spatial dimensions:

256×256 pixels). The second image is sample with a sampling frequency four times lower for

each of the two spatial dimensions. This means it is 64×64 pixels. For display purposes, it has

been brought to the same size as the original using a zoom. This is in fact an interpolation of

zero-order (each pixel is duplicated 4×4 times, so that on the screen it displays a square of

4×4 identical pixels). A pixelization (staircase) effect clearly appears, but it is still possible to

distinguish the different elements in the image (the face, the hat etc.). The third image (on the

right) shows the result after a downsampling of 16 in relation to the original, following the

two spatial directions. Again in order to see it at the same size, we have used zoom factor 16

(interpolation of zero-order creating for each sample a reconstruction by 16×16 pixels of the

same amplitude). The image is strongly pixelized and we can hardly distinguish the objects in

the scene.

 Now that we have looked at the two-dimensional sampling of a 2D signal (in this case

an image), we now have to determine how to proceed with the quantization of the sampled

image in order to get a digital image.

2005 D. BARBA 11

Quantization

Video and Image digitalization

2005 D. BARBA 12

Quantization

• Scalar quantization

x
Quantization

y = Q(x)

continuous

X

Y

t0 t1

r0

ti-1 ti ti+1 tK-1 tK

ri-1 ri rK-1

Decision thresholds

Reconstruction level

• Quantization function
for tj ≤ x < t j+1 then y = rj ∀j = 0, …, K-1

and t0= x min ; tK = x max

discrete

The image is now sampled in the spatial domain. It is made up of a set of pixels. We

now have to carry out a quantization so that each analog amplitude of the image signal is

represented by a discrete value. We choose a set of predefined values called reconstruction

levels, spread over the dynamic range [xmin, xmax] of the signal x to quantize.

On the figure above, these reconstruction levels are defined by the sequence () []1K,0iir −∈ made

up of K values. These levels are associated with decision thresholds defined by the sequence

() []K,0iit ∈ with t0=xmin et tK=xmax. Let’s take for example the case of a continuous magnitude

signal « x » as input into the quantizer; the quantized signal « y » output will be defined by

the condition:

[]1..0 −∈∀ Ki , for 1ii txt +<≤ , then y = ri and t0 = xmin ; tK = xmax

There are several ways of quantizing. The way of choosing the reconstruction levels and the

decision thresholds is not necessarily a uniformly distributed type on [xmin, xmax], and strongly

depends on the characteristics of the image signal being quantized.

2005 D. BARBA 13

Example of a quantization law

- Multiple-to-one mapping

- Want to minimize error

•Mean-square-error (ε)

- Let an input « u » with the

probability density function pu(x)

The chart above gives an example of a quantization law. The quantizer input

corresponds to « u », and the output to the signal « u’ ». The decision thresholds are given by

the sequence (ti)i and the reconstruction levels are given by the sequence (ri)i. Quantization is

a process that causes irreversible loss unlike certain forms of sampling that we have looked at

previously. However, depending on how you configure the quantization, the human eye may

not necessarily notice these errors. We must then try to minimize them. Typically, we seek to

minimize the mean square error. By definition, this square error ε
2
 is given by the relation:

[] ()∫
+ −=−=ε 1L

1

t

t
u

222 dx).x(p.)x('ux)'uu(E

Where: E stands for the statistical mean value and pu(x) stands for the probability density of u.

By decomposing the integral, we have finally:

()∑∫
=

+ −=ε
L

1i

t

t
u

2

i
2

1i

i

dx).x(p.rx

Quantization must be chosen so as to minimize the mean square error but we will see that

other criteria linked to the image characteristics also are interesting.

2005 D. BARBA 14

• Allocate more values in more probable ranges

• Minimize error in a probability sense

- MMSE (minimum mean square error):

� assign high penalty to large error

� square error gives convenience in math.:differential, etc.

• An optimization problem

-What {tk} and {rk} to use?

- Last time: necessary conditions by setting partial differential to zero

Which kind of quantization law to use? 0

The question asked here is to know what criteria must we take into account in order to

correctly choose a quantization law. The figure above represents a quantizer Q with an input

signal « u », and an output signal « u’ ». The decision thresholds are given by the sequence

(ti)i and the reconstruction levels are given by the sequence (ri)i. the probability density

function pu(x) is also represented. In this example, the quantizer is no longer linear: the

thresholds and reconstruction levels are not regularly placed. Actually, by looking carefully at

the probability density of « u », we can see that the function slope is gentler (or steeper) for

certain values of ti than for others. When the slope is gentle, we can reasonably think that you

need few reconstruction levels to represent the range of values described. Inversely, when the

curve’s slope becomes steeper, numerous values are affected in a short time and so more

levels of reconstruction are needed. We have also seen that to choose a quantization law, we

also need to minimize the mean square error whose expression directly depends on the

parameters (ti) and (ri). Optimizing quantization is achieved through the choice of decision

thresholds and reconstruction levels. These parameters can be directly determined by

minimizing the mean square error (calculation of partial derivatives etc.).

2005 D. BARBA 15

Optimal Quantization (1)

• Criteria of optimal quantization

– Mean Square Error (y = Q(x))

ε2 = E { (X-Y)2 } = ∫-∞ (x-y)2 px(x) dx

ε2 = ∑i ∫ (x-yi)
2 px(x) dx

ti+1 = (r i+ r i+1) / 2

minimization of ε2: ri= E {X / x∈[ti , ti+1] }

ti+1

+∞

r0

X

Y

t0 t1
ti-1 ti ti+1 tK-1 tK

ri-1 ri rK-1

ti

• Special case: uniform probability density function: px(x) is constant

then ti+1 = (r i+ r i+1) / 2 and ri = (t i+ t i+1) / 2

 The optimal quantization criteria is linked to the minimization of the mean square

error. The quantizer input corresponds to the signal X, and the output to signal Y. The

reconstruction levels are given here by (ri), and the decision thresholds by (ti). We are going

to try to determine the relations ensuing from this optimization and minimalization criterion:

To minimize ε
2
, we calculate its partial derivatives:

� In relation to ti : ())²rt).(t(prt).t(p
t
²

iiiX

2

1iiiX

i

−−−=
∂
ε∂

−

� In relation to ri : ∫
+ −−=

∂
ε∂ 1i

i

t

t
iX

i

dx).rx).(x(p.2
r
²

By cancelling the first partial derivative, we obtain the relation:
2
rr

t 1ii
1i

++=+

By cancelling the second partial derivative, we obtain:

0dx).rx).(x(p
1i

i

t

t
iX =−∫

+
 ⇔ ∫∫

++ = 1i

i

1i

i

t

t
iX

t

t
X dx.r).x(pdx.x).x(p

 ⇔ [[{ } i

t

t
Xi1ii rdx).x(p.rt,tx;XE

1i

i

==∈ ∫
+

+

This means that minimizing the mean square error (optimal quantization) implies that the

decision thresholds di and the reconstruction levels qi be given by the

relations:

[[{ }

∈=

+
=

+

+
+

1

1

1

,;

2

iii

ii

i

ddxXEq

qq
d

.

These are the two relations obtained by Max. These show that the optimal quantizer for a

signal using a non-uniform probability density function is not a linear quantizer.

In the particular case of an input signal whose probability density is constant over [xmin, xmax],

we have :
)(

1
)(

minmax xx
xpX −

= , and we obtain the relations:

+=

+=

+
+

+

2
rr

t

2
tt

r

1ii
1i

1ii
i

The optimal quantizer is linear in this case:
K

xx
∆t minmax

i

−= .

For a signal normalized over [0, 1], the minimized square error is worth:
2

2

.12

1

K
=ε .

We have seen that, in order to optimize the quantizer, we must minimize the mean square

error of quantization with this criterion. Naturally, other criteria may be used, in particular

those concerning the visual appearance.

2005 D. BARBA 16

• Maximum entropy quantization : H(Y) maximum si Y est

à loi de probabilité constante

pi = ∫ px(x) dx = constant ∀i =1, ….. , K

Optimal Quantization (2)

ti

• Psycho-visual quantization of images

- Perception of small stimuli on a background: ∆L / L = cst

- Cst ≅ 0.01 in luminance TV range (given by Weber law)

« Log »
Linear

Quantization

x y = Q’(x’) = Q(x)x’

X ’ X

X

ti+1

The characteristics of the human system of vision can be used to design the

quantization law. For a usual stimulus of a given form and fixed ∆L amplitude, the visibility

threshold ∆L / L is more or less constant (L being the luminance). In the TV luminance range,

it varies slightly when L goes from black to white. For a quantization at the visibility

threshold, we would have ri+1-ri=∆L. It becomes possible to use a uniform quantization on a

compressed signal by a non-linearity « f » (see diagram above). You would of course need to

carry out the reverse operation coming out of the quantizer with an expansion function.

This non-linear compression function is defined by)/(.).()(0
0

LxLogdxxLxf
x

L
λ≈∆= ∫ . For

television, compression « f » is already used: it is the gamma correction given by γ
1

)(xxf =

that compensates for the non-linear nature of CRT-type TV screens. We then apply a linear

quantization over 256 leveks. In color television, we usually quantize the luminance and

chromatic signals separately. From a perceptual point of view, the YCrCb space is more

uniform than the RGB space.

We can see by looking at television-type applications that despite the interesting properties of

the optimal quantizer, it can sometimes be a better idea to use a non-linear compression

function and then to use a linear quantization (even if the signal’s probability density function

is not uniform). The "compression function – quantization – expansion function" series would

be chosen in order to approximate the optimal quantization law.

2005 D. BARBA 18

Example: quantization of an image

256 – level

quantization

16 - level quantization

4 - level quantizationImage Lena

This illustration shows examples of a quantization carried out on the image Lena:

� For the image on the left: quantization is followed by a natural binary coding with 8

bits per pixel. There are 2
8
 = 256 reconstruction levels to represent the magnitude of

each pixel. It is the typical case of a monochrome image (only in gray scales).

� For the middle image: quantization is carried out with a 4 bits per pixel coding, giving

2
4
 = 16 reconstruction levels. Contours are well rendered but textures are imprecise in

some cases. These are areas in the signal with a weak spatial variation, which suffer

more visually due to the appearance of false contours (loss on the face and the

shoulder).

� For the image on the right: quantization is carried out with a 2 bits per pixel coding, so

we have 2
2
 = 4 reconstruction levels. The deterioration seen on the previous image is

even more flagrant here.

We have now seen the various steps of image digitalization: double discretization by spatial

sampling and then by quantization. The images are now digital and are ready to be processed

with appropriate techniques, according to the required application.f

Chapter 1 – Introduction to digital image processing

TEST

1 – In the table below, use YES and NO to indicate whether the Objective given is in relation

with the image processing Domain indicated.

 Domain

Objective

Data

compression

(coding)

Image synthesis

Image

enhancement

and restoration

Image analysis

Measuring the size

of an object

Visualizing the

image of an object

Reducing noise

Compressing the

binary flow

Determining the

color of an object

Enhancing image

contrast

Recognizing a

pattern in an image

2 – This diagram represents very briefly a digital image or video compression application:

What is the object of each of these two main functions (boxes (1) and (2))?

3 – For an image analysis application, give two examples of data output from the Analysis

block.

4 – Sampling

Let IA be an analog input image (image signal fA(x, y)). Its spectrum FA is band-limited and

the spectrum support SFA(νx, νy) is represented below:

� νx, νy : respectively horizontal and vertical

spatial frequencies.

We sample this image IA by a square sampling structure E1 with three step values (∆x1, ∆y1) :

- a) ∆x1 = ∆y1 = 1/40

- b) ∆x1 = ∆y1 = 1/80

- c) ∆x1 = ∆y1 = 1/120

For each of these cases, a), b), and c), indicate if there is an aliasing effect in the horizontal

structure or in the vertical structure. Justify your answer each time.

What conclusion do you reach about the differences with sampling purely time signals?

5 – Quantization

Given a sampled monochrome image, whose luminance follows the probability distribution

below:

This is a symmetric linear law in relation to 5.

We want to quantize the luminance over 5 levels. To do this we fix beforehand 4 decision

thresholds ti so that the 5 intervals [ti, ti+1[measure the same. So we have: t0=0 ; t1=2 ; t2=4 ;

t3=6 ; t4=8 ; t5=10.

a) For each of these 5 intervals [ti, ti+1[; i = {0, 1, 2 , 3, 4, 5} determine the optimal

quantization level ri that minimizes the mean square error.

b) From these 5 optimal quantization values r1, r2, r3, r4, r5, what would be the optimal values

for the four decision thresholds t1, t2, t3, t4 ?

We can note that we could simply reiterate this set of 2 stages to arrive at a law of optimal

quantization, after stabilization of the quantization and decision values.

	Introduction to digital image processing
	Examples of image processing applications
	Introduction to Matlab
	Color images [Concept]
	Breaking-up a color image
	Digitalization [Concept]
	Digitalization
	Test of the chapter 1

