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Interprétation des formules formules atomiques

interprétation de F et de P : structure M
I domaine d’interprétation |M|
I associe à chaque constante k ∈ F0 un élément kM ∈ |M|
I associe à chaque f ∈ Fn une fonction n-aire f M : |M|n → |M|
I associe à chaque symbole p ∈ P0 un booléen pM ∈ {0,1}
I associe à chaque p ∈ Pn un ensemble de n-uplets pM ⊆ |M|n

Cours 5 Interprétation : variables et quantificateurs

Logique – Licence Informatique, Sorbonne Université 6/14



Interprétation des formules formules atomiques

interprétation de F et de P : structure M
I domaine d’interprétation |M|
I associe à chaque constante k ∈ F0 un élément kM ∈ |M|
I associe à chaque f ∈ Fn une fonction n-aire f M : |M|n → |M|
I associe à chaque symbole p ∈ P0 un booléen pM ∈ {0,1}
I associe à chaque p ∈ Pn un ensemble de n-uplets pM ⊆ |M|n

interprétation de X : valuation v : X → |M|

Cours 5 Interprétation : variables et quantificateurs

Logique – Licence Informatique, Sorbonne Université 6/14



Interprétation des formules formules atomiques

interprétation de F et de P : structure M
I domaine d’interprétation |M|
I associe à chaque constante k ∈ F0 un élément kM ∈ |M|
I associe à chaque f ∈ Fn une fonction n-aire f M : |M|n → |M|
I associe à chaque symbole p ∈ P0 un booléen pM ∈ {0,1}
I associe à chaque p ∈ Pn un ensemble de n-uplets pM ⊆ |M|n

interprétation de X : valuation v : X → |M|

interprétation des formules atomiques IM,v : L(X ,F ,P)→ IB

p ∈ P0 IM,v (p) = pM

p ∈ Pn
(n > 0) IM,v (p(t1, · · · , tn)) =

{
1 si

(
[t1]Mv , · · · , [tn]Mv

)
∈ pM

0 sinon

Cours 5 Interprétation : variables et quantificateurs

Logique – Licence Informatique, Sorbonne Université 6/14



Interprétation des quantificateurs : exemples

langage logique : F = F1 = {f}, P = F2 = {p,q}

[∀x p(x , f (x))]Mv =
∏
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M
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= [p(x , f (x))]Mv [x←−2] · [p(x , f (x))]
M
v [x←−1] · [p(x , f (x))]

M
v [x←1] · [p(x , f (x))]

M
v [x←2]

= 1 · 1 · 1 · 1 = 1
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= [p(f (x), x)]Mv [x←−2] + [p(f (x), x)]Mv [x←−1] + [p(f (x), x)]Mv [x←1] + [p(f (x), x)]Mv [x←2]
= 0 + 0 + 1 + 1 = 1

[∃x q(f (x), x)]Mv =
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m∈|M| [q(f (x), x)]
M
v [x←m]

= [q(f (x), x)]Mv [x←−2] + [q(f (x), x)]Mv [x←−1] + [q(f (x), x)]Mv [x←1] + [q(f (x), x)]Mv [x←2]
= 0 + 0 + 0 + 0 = 0
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Interprétation des formules : exemple

∀x ∃y r(x , f (y))

structure
M1

M2 M3 M4

domaine
IN

Z IN IN

interprétation
des fonctions
f M1 : IN→ IN

f M2 : Z→ Z f M3 : IN→ IN f M4 : IN→ IN

n 7→ n + 1

n 7→ n + 1 n 7→ n n 7→ n + 1

interprétation
des prédicats
rM1 ⊆ IN× IN

rM2 ⊆ Z× Z rM3 ⊆ IN× IN rM4 ⊆ IN× IN

{(n1, n2) | n1 ≥ n2}

{(n1, n2) | n1 ≥ n2} {(n1, n2) | n1 ≥ n2} {(n1, n2) | n1 ≤ n2}
∀x ∃y x ≥ y + 1 ∀x ∃y x ≥ y + 1 ∀x ∃y x ≥ y ∀x ∃y x ≤ y + 1

« faux » « vrai » « vrai » « vrai »
(x = 0) (y = x − 2) (y = x) (y = x)
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Interprétation des formules de IF(X ,F ,P)

interprétation [∀x F ]Mv de ∀x F
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Interprétation des formules de IF(X ,F ,P)

interprétation [∀x F ]Mv de ∀x F

I expression booléenne :
∏

m∈|M|
[F ]Mv [x←m]
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Interprétation des formules : [ ]Mv : IF(X ,F ,P)→ IB

[true]Mv = 1 [false]Mv = 0

[p(t1, · · · , tn)]Mv = IM,v (p(t1, · · · , tn)) =
{

1 si
(
[t1]Mv , · · · , [tn]Mv

)
∈ pM

0 sinon
[¬F ]Mv = [F ]Mv [F1 ∧ F2]

M
v = [F1]

M
v · [F2]

M
v

[F1 ∨ F2]
M
v = [F1]

M
v + [F2]

M
v [F1 ⇒ F2]

M
v = [F1]

M
v + [F2]

M
v

[∀x F ]Mv =
∏

m∈|M|
[F ]Mv [x←m]

=

{
1 ssi [F ]Mv [x←m] = 1 pour chaque élément m ∈ |M|
0 ssi [F ]Mv [x←m] = 0 pour au moins un élément m ∈ |M|

[∃x F ]Mv =
∑

m∈|M|
[F ]Mv [x←m]

=

{
1 ssi [F ]Mv [x←m] = 1 pour au moins un élément m ∈ |M|
0 ssi [F ]Mv [x←m] = 0 pour chaque élément m ∈ |M|
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Interprétation des formules

la valuation v sert uniquement à déterminer la valeur des variables
libres de F lors du calcul de [F ]Mv
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Interprétation des formules

la valuation v sert uniquement à déterminer la valeur des variables
libres de F lors du calcul de [F ]Mv

I exemple : ∀x p(x , y) (Free(∀x p(x , y)) = {y})

structure M de domaine |M| = {−2,−1,1,2}
pM ⊆ |M|2 pM = {(m1,m2)|m1 ≤ m2}
valuation v telle que v(x) = −1 et v(y) = 2
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m∈|M| [p(x , y)]
M
v [x←m]

= [p(x , y)]Mv [x←−2] · [p(x , y)]
M
v [x←−1] · [p(x , y)]

M
v [x←1] · [p(x , y)]

M
v [x←2]

= 1 · 1 · 1 · 1 = 1
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M
v [x←−1] · [p(x , y)]

M
v [x←1] · [p(x , y)]

M
v [x←2]

= 1 · 1 · 1 · 1 = 1

[p(x , y)]Mv [x←m] = 1

ssi
(
[x ]Mv [x←m], [y ]

M
v [x←m]

)
= (v [x ← m](x), v [x ← m](y)) = (m, v(y)) ∈ pM

ssi m ≤ v(y)
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Interprétation des formules

la valuation v sert uniquement à déterminer la valeur des variables
libres de F lors du calcul de [F ]Mv

[F ]Mv ne dépend pas des valeurs associées par v aux variables
n’appartenant pas à Free(F )
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n’appartenant pas à Free(F )

I si x 6∈ Free(F ), alors [F ]Mv = [F ]Mv [x←m] (pour tout m ∈ |M|)
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Modèles – Formules valides
une structure M satisfait une formule F ssi [F ′]Mv = 1 où F ′ est la
clôture universelle de F (et v est une valuation quelconque).

I M est un modèle de F
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Cours 5 Interprétation : variables et quantificateurs

Logique – Licence Informatique, Sorbonne Université 12/14



Modèles – Formules valides
une structure M satisfait une formule F ssi [F ′]Mv = 1 où F ′ est la
clôture universelle de F (et v est une valuation quelconque).

I M est un modèle de F

une formule insatisfiable est une formule qui n’admet pas de modèle.

une formule F est valide ssi elle est satisfaite par toutes les structures
du langage défini par F ∪ P.
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clôture universelle de F (et v est une valuation quelconque).

I M est un modèle de F

une formule insatisfiable est une formule qui n’admet pas de modèle.

une formule F est valide ssi elle est satisfaite par toutes les structures
du langage défini par F ∪ P.

I impossible d’énumérer toutes les structures M : déterminer si F est
valide est un problème indécidable

F il n’existe pas d’algorithme qui détermine si F est valide
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Conséquences – Formules équivalentes

F2 |= F1 : la formule F1 est une conséquence de la formule F2 ssi pour
toute structure M et toute valuation v , si [F2]

M
v = 1, alors [F1]

M
v = 1
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F2 |= F1 : la formule F1 est une conséquence de la formule F2 ssi pour
toute structure M et toute valuation v , si [F2]

M
v = 1, alors [F1]

M
v = 1

I {F1, · · · ,Fn} |= F : la formule F est une conséquence de
l’ensemble de formules {F1, · · · ,Fn} ssi pour toute structure M et
toute valuation v , si [F1 ∧ · · · ∧ Fn]

M
v = 1, alors [F ]Mv = 1.
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F2 |= F1 : la formule F1 est une conséquence de la formule F2 ssi pour
toute structure M et toute valuation v , si [F2]

M
v = 1, alors [F1]

M
v = 1

I {F1, · · · ,Fn} |= F : la formule F est une conséquence de
l’ensemble de formules {F1, · · · ,Fn} ssi pour toute structure M et
toute valuation v , si [F1 ∧ · · · ∧ Fn]

M
v = 1, alors [F ]Mv = 1.

I F2 |= F1 ssi F2 ⇒ F1 est valide
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Conséquences – Formules équivalentes

F2 |= F1 : la formule F1 est une conséquence de la formule F2 ssi pour
toute structure M et toute valuation v , si [F2]

M
v = 1, alors [F1]

M
v = 1

I {F1, · · · ,Fn} |= F : la formule F est une conséquence de
l’ensemble de formules {F1, · · · ,Fn} ssi pour toute structure M et
toute valuation v , si [F1 ∧ · · · ∧ Fn]

M
v = 1, alors [F ]Mv = 1.

I F2 |= F1 ssi F2 ⇒ F1 est valide
I {F1,F2, · · · ,Fn} |= F ssi (F1 ∧ F2 ∧ · · · ∧ Fn)⇒ F est valide
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I {F1, · · · ,Fn} |= F : la formule F est une conséquence de
l’ensemble de formules {F1, · · · ,Fn} ssi pour toute structure M et
toute valuation v , si [F1 ∧ · · · ∧ Fn]

M
v = 1, alors [F ]Mv = 1.

I F2 |= F1 ssi F2 ⇒ F1 est valide
I {F1,F2, · · · ,Fn} |= F ssi (F1 ∧ F2 ∧ · · · ∧ Fn)⇒ F est valide

F1 |≡|F2 : les formules F1 et F2 sont équivalentes ssi pour toute structure
M et toute valuation v , [F1]

M
v = [F2]

M
v
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F2 |= F1 : la formule F1 est une conséquence de la formule F2 ssi pour
toute structure M et toute valuation v , si [F2]
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v = 1, alors [F1]
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v = 1

I {F1, · · · ,Fn} |= F : la formule F est une conséquence de
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I F2 |= F1 ssi F2 ⇒ F1 est valide
I {F1,F2, · · · ,Fn} |= F ssi (F1 ∧ F2 ∧ · · · ∧ Fn)⇒ F est valide

F1 |≡|F2 : les formules F1 et F2 sont équivalentes ssi pour toute structure
M et toute valuation v , [F1]

M
v = [F2]

M
v

I |≡| est une relation d’équivalence (relation réflexive, symétrique et
transitive)
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Conséquences – Formules équivalentes

F2 |= F1 : la formule F1 est une conséquence de la formule F2 ssi pour
toute structure M et toute valuation v , si [F2]

M
v = 1, alors [F1]

M
v = 1

I {F1, · · · ,Fn} |= F : la formule F est une conséquence de
l’ensemble de formules {F1, · · · ,Fn} ssi pour toute structure M et
toute valuation v , si [F1 ∧ · · · ∧ Fn]

M
v = 1, alors [F ]Mv = 1.

I F2 |= F1 ssi F2 ⇒ F1 est valide
I {F1,F2, · · · ,Fn} |= F ssi (F1 ∧ F2 ∧ · · · ∧ Fn)⇒ F est valide

F1 |≡|F2 : les formules F1 et F2 sont équivalentes ssi pour toute structure
M et toute valuation v , [F1]

M
v = [F2]

M
v

I |≡| est une relation d’équivalence (relation réflexive, symétrique et
transitive)

I F1 |≡|F2 ssi F2 |= F1 et F1 |= F2.
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Validité/Complétude de la Déduction Naturelle
F ,F1, · · · ,Fn ∈ IF(X ,F ,P)

Validité : si F est prouvable à partir des hypothèses F1, · · · ,Fn, alors
{F1, · · · ,Fn} |= F

Complétude : si {F1, · · · ,Fn} |= F alors F est prouvable à partir des
hypothèses F1, · · · ,Fn
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