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Quantification universelle : introduction (I∀)
〈i〉 supposons h1 : inf(k , x), h2 : inf(k , z),montrons ∀x inf(w , x)

〈i + 1〉 soit x , montrons inf(w , x)

Erreur : x désigne un terme sur lequel porte une hypothèse (h1)

〈i + 1〉 CQFD (· · · )

〈i〉 CQFD (I∀)

pour prouver une propriété A pour tout x , c-à-d pour prouver ∀x A

, il suffit de
prouver la propriété A pour un élément y sans rien supposer sur cet
élément, c-à-d prouver A[x := y ] avec y 6∈ Free(A) ∪ ∪n

i=1Free(Ai)

〈i〉 supposons h1 : A1, · · · , hn : An,montrons ∀x A

〈i + 1〉 soit une nouvelle variable y 6∈ Free(A) ∪ ∪n
i=1Free(Ai)

montrons A[x := y ]
· · ·

〈i + 1〉 CQFD

〈i〉 CQFD (I∀)
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Quantification universelle : introduction (I∀)
le contenu de la boîte 〈i + 1〉 est complètement déterminé par le
contenu de la boîte 〈i〉
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Quantification universelle : élimination (E∀)
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· · ·
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〈i〉 CQFD (E∀)

pour prouver une propriété A exprimée sur une variable x pour une certaine
valeur t de x , c-à-d pour prouver A[x := t ]

, il suffit de prouver cette propriété
pour toutes les valeurs de x , c-à-d prouver ∀x A
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Quantification universelle : élimination (E∀)

le contenu de la boîte 〈i + 1〉 est obtenu en déterminant quelle variable
de la formule à prouver il faut « généraliser » (i.e. quantifier
universellement)

pour prouver une propriété A exprimée sur une variable x pour une certaine
valeur t de x , c-à-d pour prouver A[x := t ], il suffit de prouver cette propriété
pour toutes les valeurs de x , c-à-d prouver ∀x A
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Quantification existentielle : introduction (I∃)

〈i〉 montrons ∃x premier(x)

〈i + 1〉 montrons premier(7) (premier(x))[x := 7]
· · ·

〈i + 1〉 CQFD

〈i〉 CQFD (I∃)

pour prouver qu’il existe une valeur pour la variable x pour laquelle une
propriété A est « vraie », c-à-d pour prouver ∃x A

, il suffit de trouver une
valeur t et de prouver A[x := t ]

〈i〉 supposons h1 : A1, · · · , hn : An

montrons ∃x A

〈i + 1〉 montrons A[x := t ]
· · ·

〈i + 1〉 CQFD

〈i〉 CQFD (I∃)
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Quantification existentielle : élimination (E∃)

〈1〉 supposons h1 : inf(k , z), h2 : ∃x inf(v , x),montrons inf(k ,w)

〈2〉 montrons ∃x inf(v , x)
〈2〉 CQFD (Ax avec h2)

〈3〉 soit z, supposons h3 : inf(v , z),montrons inf(k ,w)

Erreur : z désigne un terme sur lequel porte une hypothèse (h1)

〈3〉 CQFD (· · · )
〈1〉 CQFD (I∀)
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Quantification existentielle : élimination (E∃)

pour prouver une propriété B

, il suffit de prouver :
qu’il existe une valeur pour x telle qu’une propriété A soit « vraie » pour
cette valeur, c-à-d de prouver ∃x A,

et de prouver la propriété B en supposant la propriété A « vraie » pour
un certain y , sans rien supposer sur y , c-à-d de prouver B en
supposant A[x := y ] avec y 6∈ Free(B) ∪ ∪n

i=1Free(Ai)

〈i〉 supposons h1 : A1, · · · , hn : An,montrons B

〈i + 1〉 montrons ∃x A(x)
· · ·

〈i + 1〉 CQFD

〈i + 2〉 soit une nouvelle variable y 6∈ Free(A) ∪ Free(B) ∪ ∪n
i=1Free(Ai)

supposons h : A[x := y ],montrons B
· · ·

〈i + 2〉 CQFD

〈i〉 CQFD (E∃)
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sans rien supposer sur y
la preuve de ∃x A ne fournit pas nécessairement la valeur de x pour laquelle A est
« vraie » ... par exemple lorsque cette preuve utilise un raisonnement par l’absurde qui
prouve une contradiction si l’on suppose que cette valeur n’existe pas, ce qui permet
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Exemple (1)
〈1〉 montrons (∀x ¬p(x))⇒ (¬∃x p(x))

〈2〉 supposons h1 : ∀x ¬p(x),montrons ¬∃x p(x)

〈3〉 supposons h2 : ∃x p(x),montrons false

〈4〉 montrons ∃x p(x)
〈4〉 CQFD (Ax avec h2)

〈5〉 soit une nouvelle variable y , supposons h3 : p(y)

montrons false

(p(x))[x := y ] = p(y)

〈6〉 montrons ¬p(y) (¬p(x))[x := y ] = ¬p(y)

〈7〉 montrons ∀x ¬p(x)
〈7〉 CQFD (Ax avec h1)

〈6〉 CQFD (E∀)

〈7〉 montrons p(y)
〈7〉 CQFD (Ax avec h3)

〈5〉 CQFD (E¬)

〈3〉 CQFD (E∃)

〈2〉 CQFD (I¬)

〈1〉 CQFD (I⇒)
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Exemple (2)

〈1〉 montrons (¬∃x p(x))⇒ (∀x ¬p(x))

〈2〉 supposons h1 : ¬∃x p(x),montrons ∀x ¬p(x)

〈3〉 soit une nouvelle variable y
montrons ¬p(y) (¬p(x))[x := y ] = ¬p(y)

〈4〉 supposons h2 : p(y),montrons false

〈5〉 montrons ¬∃x p(x)
〈5〉 CQFD (Ax avec h1)

〈6〉 montrons ∃x p(x) (p(x))[x := y ] = p(y)

〈7〉 montrons p(y)
〈7〉 CQFD (Ax avec h2)

〈6〉 CQFD (I∃)

〈4〉 CQFD (E¬)

〈3〉 CQFD (I¬)

〈2〉 CQFD (I∀)

〈1〉 CQFD (I⇒)
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Exemple (2)

〈1〉 montrons (¬∃x p(x))⇒ (∀x ¬p(x))
〈2〉 supposons h1 : ¬∃x p(x),montrons ∀x ¬p(x)

〈3〉 soit une nouvelle variable y
montrons ¬p(y) (¬p(x))[x := y ] = ¬p(y)

〈4〉 supposons h2 : p(y),montrons false

〈5〉 montrons ¬∃x p(x)
〈5〉 CQFD (Ax avec h1)

〈6〉 montrons ∃x p(x) (p(x))[x := y ] = p(y)

〈7〉 montrons p(y)
〈7〉 CQFD (Ax avec h2)

〈6〉 CQFD (I∃)

〈4〉 CQFD (E¬)

〈3〉 CQFD (I¬)

〈2〉 CQFD (I∀)
〈1〉 CQFD (I⇒)
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